“Discrete Geodesic Nets for Modeling Developable Surfaces”

  • ©Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung




    Discrete Geodesic Nets for Modeling Developable Surfaces



    We present a discrete theory for modeling developable surfaces as quadrilateral meshes satisfying simple angle constraints. The basis of our model is a lesser-known characterization of developable surfaces as manifolds that can be parameterized through orthogonal geodesics. Our model is simple and local, and, unlike in previous works, it does not directly encode the surface rulings. This allows us to model continuous deformations of discrete developable surfaces independently of their decomposition into torsal and planar patches or the surface topology. We prove and experimentally demonstrate strong ties to smooth developable surfaces, including a theorem stating that every sampling of the smooth counterpart satisfies our constraints up to second order. We further present an extension of our model that enables a local definition of discrete isometry. We demonstrate the effectiveness of our discrete model in a developable surface editing system, as well as computation of an isometric interpolation between isometric discrete developable shapes.


    1. Richard L. Bishop. 1975. There is more than one way to frame a curve. Am. Math. Mon. 82, 3 (1975), 246–251.
    2. Pengbo Bo and Wenping Wang. 2007. Geodesic-controlled developable surfaces for modeling paper bending. Comput. Graph. Forum 26, 3 (2007), 365–374
    3. Alexander Bobenko and Ulrich Pinkall. 1996. Discrete surfaces with constant negative gaussian curvature and the hirota equation. J. Differential Geom. 43, 3 (1996), 527–611.
    4. Alexander I. Bobenko, Tim Hoffmann, and Boris A. Springborn. 2006. Minimal surfaces from circle patterns: Geometry from combinatorics. Ann. Math. 164, 1 (2006), 231–264.
    5. Alexander I. Bobenko and Yuri B. Suris. 2008. Discrete Differential Geometry: Integrable Structure. Graduate studies in mathematics, Vol. 98. American Mathematical Society, Providence (R.I.).
    6. Alexander I. Bobenko and Yuri B. Suris. 2009. Discrete koenigs nets and discrete isothermic surfaces. Int. Math. Res. Not. 2009, 11 (2009), 1976–2012.
    7. Rob Burgoon, Zoë J. Wood, and Eitan Grinspun. 2006. Discrete shells origami. In Proceedings of the 21st International Conference on Computers and Their Applications (CATA’06).
    8. H.-Y. Chen, I.-K. Lee, S. Leopoldseder, H. Pottmann, T. Randrup, and J. Wallner. 1999. On surface approximation using developable surfaces. Graph. Models Image Process. 61, 2 (1999), 110–124.
    9. Keenan Crane and Max Wardetzky. 2017. A glimpse into discrete differential geometry. Not. Am. Math. Soc. 64, 11 (2017), 1153–1159.
    10. Erik D. Demaine, Martin L. Demaine, Vi Hart, Gregory N. Price, and Tomohiro Tachi. 2011. (Non) existence of pleated folds: How paper folds between creases. Graphs Combin. 27, 3 (2011), 377–397. 
    11. Erik D. Demaine and Joseph O’Rourke. 2007. Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press. 
    12. M. Desbrun, E. Grinspun, P. Schröder, and M. Wardetzky. 2005. Discrete differential geometry: An applied introduction. In SIGGRAPH Course Notes, Vol. 1.
    13. Manfredo P. do Carmo. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.
    14. Elliot English and Robert Bridson. 2008. Animating developable surfaces using nonconforming elements. ACM Trans. Graph. 27, 3 (2008), 66. 
    15. William H. Frey. 2004. Modeling buckled developable surfaces by triangulation. Comput. Aid. Des. 36, 4 (2004), 299–313.
    16. Stefan Fröhlich and Mario Botsch. 2011. Example-driven deformations based on discrete shells. Comput. Graph. Forum 30, 8 (2011), 2246–2257.
    17. William Caspar Graustein. 1917. On the geodesics and geodesic circles on a developable surface. Ann. Mathe. 18, 3 (1917), 132–138.
    18. Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete shells. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 62–67. 
    19. Tim Hoffmann, Andrew O. Sageman-Furnas, and Max Wardetzky. 2017. A discrete parametrized surface theory in R3. Int. Math. Res. Not. 2017, 14 (2017), 4217–4258.
    20. David A. Huffman. 1976. Curvature and creases: A primer on paper. IEEE Trans. Comput. 25, 10 (1976), 1010–1019. 
    21. Hae-Do Hwang and Seung-Hyun Yoon. 2015. Constructing developable surfaces by wrapping cones and cylinders. Comput.-Aid. Des. 58 (2015), 230–235. 
    22. Martin Kilian, Simon Flöry, Zhonggui Chen, Niloy J. Mitra, Alla Sheffer, and Helmut Pottmann. 2008. Curved folding. ACM Trans. Graph. 27, 3, Article 75 (Aug. 2008), 9 pages. 
    23. Snežana Lawrence. 2011. Developable surfaces: Their history and application. Nexus Netw. J. 13, 3 (2011), 701–714.
    24. Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen-Or. 2005. Linear rotation-invariant coordinates for meshes. In Proceedings of the ACM SIGGRAPH 2005 Papers (SIGGRAPH’05). ACM, New York, NY, 479–487. 
    25. Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang. 2006. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. 25, 3 (2006), 681–689. 
    26. Rahul Narain, Tobias Pfaff, and James F. O’Brien. 2013. Folding and crumpling adaptive sheets. ACM Trans. Graph. 32, 4 (Jul. 2013), 51:1–8. 
    27. Jorge Nocedal. 1980. Updating quasi-newton matrices with limited storage. Math. Comput. 35, 151 (1980), 773–782.
    28. J. Nocedal and S. J. Wright. 2006. Numerical Optimization (2nd ed.). Springer, New York.
    29. Francisco Pérez and José Antonio Suárez. 2007. Quasi-developable B-spline surfaces in ship hull design. Comput.-Aid. Des. 39, 10 (2007), 853–862.
    30. Konrad Polthier and Markus Schmies. 2006. Straightest Geodesics on Polyhedral Surfaces. ACM.
    31. Helmut Pottmann and Johannes Wallner. 1999. Approximation algorithms for developable surfaces. Comput. Aid. Geom. Des. 16, 6 (1999), 539–556.
    32. Helmut Pottmann and Johannes Wallner. 2001. Computational Line Geometry. Springer, Berlin. 
    33. Kenneth Rose, Alla Sheffer, Jamie Wither, Marie-Paule Cani, and Boris Thibert. 2007. Developable surfaces from arbitrary sketched boundaries. In Proceedings of the Symposium on Geometry Processing. 163–172. 
    34. Szymon Rusinkiewicz. 2004. Estimating curvatures and their derivatives on triangle meshes. In Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004 (3DPVT’04). IEEE, 486–493. 
    35. Robert Sauer. 1970. Differenzengeometrie. Springer.
    36. Wolfgang K. Schief, Alexander I. Bobenko, and Tim Hoffmann. 2008. On the integrability of infinitesimal and finite deformations of polyhedral surfaces. In Discrete Differential Geometry. Birkhäuser, Basel, 67–93.
    37. Camille Schreck, Damien Rohmer, and Stefanie Hahmann. 2017. Interactive paper tearing. Comput. Graph. Forum (Eurograph.) 36, 2 (2017), 95–106. 
    38. Camille Schreck, Damien Rohmer, Stefanie Hahmann, Marie-Paule Cani, Shuo Jin, Charlie C. L. Wang, and Jean-Francis Bloch. 2015. Nonsmooth developable geometry for interactively animating paper crumpling. ACM Trans. Graph. 35, 1 (2015), 10. 
    39. Dennis Robert Shelden. 2002. Digital Surface Representation and the Constructibility of Gehry’s Architecture. Ph.D. Dissertation. Massachusetts Institute of Technology.
    40. Justin Solomon, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2012. Flexible developable surfaces. Comput. Graph. Forum 31, 5 (2012), 1567–1576. 
    41. Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Proceedings of the EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing. 109–116. 
    42. Michael Spivak. 1999. A Comprehensive Introduction to Differential Geometry, 1. Publish or Perish, Houston, TX.
    43. Tomohiro Tachi. 2009. Simulation of rigid origami. Origami 4 (2009), 175–187.
    44. Chengcheng Tang, Pengbo Bo, Johannes Wallner, and Helmut Pottmann. 2016. Interactive design of developable surfaces. ACM Trans. Graph. 35, 2, Article 12 (Jan. 2016), 12 pages. 
    45. Wenping Wang, Johannes Wallner, and Yang Liu. 2007. An angle criterion for conical mesh vertices. J. Geom. Graph. 11, 2 (2007), 199–208.
    46. Margaret Wertheim. 2004. Cones, curves, shells, towers: He made paper jump to life. The New York Times 2, 4 (2004), 5.
    47. W. Wunderlich. 1951. Zur differenzengeometrie der flächen konstanter negativer krümmung. Sitzungsber. Österr. Akad. Wiss. 160 (1951), 39–77.

ACM Digital Library Publication: