“Designing inflatable structures” by Skouras, Thomaszewski, Kaufmann, Garg, Bickel, et al. …

  • ©Melina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross

Conference:


Type:


Title:

    Designing inflatable structures

Session/Category Title: Fabrication-Oriented Design


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We propose an interactive, optimization-in-the-loop tool for designing inflatable structures. Given a target shape, the user draws a network of seams defining desired segment boundaries in 3D. Our method computes optimally-shaped flat panels for the segments, such that the inflated structure is as close as possible to the target while satisfying the desired seam positions. Our approach is underpinned by physics-based pattern optimization, accurate coarse-scale simulation using tension field theory, and a specialized constraint-optimization method. Our system is fast enough to warrant interactive exploration of different seam layouts, including internal connections, and their effects on the inflated shape. We demonstrate the resulting design process on a varied set of simulation examples, some of which we have fabricated, demonstrating excellent agreement with the design intent.

References:


    1. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarDigital Library
    2. Baginski, F., Barg, M., and Collier, W. 2008. Existence theorems for tendon-reinforced thin wrinkled membranes subjected to a hydrostatic pressure load. Math. Mech. Solids 13, 6.Google ScholarCross Ref
    3. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3. Google ScholarDigital Library
    4. Bickel, B., Kaufmann, P., Skouras, M., Thomaszewski, B., Bradley, D., Beeler, T., Jackson, P., Marschner, S., Matusik, W., and Gross, M. 2012. Physical face cloning. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarDigital Library
    5. Byrd, R. H., Curtis, F. E., and Nocedal, J. 2010. An inexact newton method for nonconvex equality constrained optimization. Mathematical Programming 122, 2. Google ScholarDigital Library
    6. Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3d-printing of non-assembly, articulated models. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarDigital Library
    7. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarDigital Library
    8. Chen, D., Levin, D. I. W., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarDigital Library
    9. Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Trans. Graph. (Proc. SIGGRAPH) 21, 3. Google ScholarDigital Library
    10. Choi, K.-J., and Ko, H.-S. 2003. Extending the immediate buckling model to triangular meshes for simulating complex clothes. Eurographics 2003 Short Presentations, 187–191.Google Scholar
    11. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarDigital Library
    12. Furuta, Y., Umetani, N., Mitani, J., Igarashi, T., and Fukui, Y. 2010. A film balloon design system integrated with shell element simulation. Eurographics – Short papers, 33–36.Google Scholar
    13. Hormann, K., Lévy, B., and Sheffer, A. 2007. Mesh parameterization: Theory and practice. In ACM SIGGRAPH Courses. Google ScholarDigital Library
    14. Hullin, M. B., Ihrke, I., Heidrich, W., Weyrich, T., Damberg, G., and Fuchs, M. 2013. Computational fabrication and display of material appearance. In Eurographics STARs.Google Scholar
    15. Igarashi, Y., and Igarashi, T. 2008. Pillow: Interactive flattening of a 3d model for plush toy design. In Proc. of the 9th International Symposium on Smart Graphics, SG 2008, 1–7. Google ScholarDigital Library
    16. Julius, D., Kraevoy, V., and Sheffer, A. 2005. D-charts: Quasi-developablemesh segmentation. Comput. Graph. Forum 24, 3, 581–590.Google ScholarCross Ref
    17. Kilian, M., Flöry, S., Chen, Z., Mitra, N. J., Sheffer, A., and Pottmann, H. 2008. Curved folding. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3. Google ScholarDigital Library
    18. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3d furniture models to fabricatable parts and connectors. ACM Trans. Graph. 30, 4. Google ScholarDigital Library
    19. Massarwi, F., Gotsman, C., and Elber, G. 2007. Papercraft models using generalized cylinders. In Proc. of Pacific Graphics ’07, IEEE. Google ScholarDigital Library
    20. Mitani, J., and Suzuki, H. 2004. Making papercraft toys from meshes using strip-based approximate unfolding. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 3. Google ScholarDigital Library
    21. Mori, Y., and Igarashi, T. 2007. Plushie: An interactive design system for plush toys. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3. Google ScholarDigital Library
    22. Narain, R., Samii, A., and O’Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarDigital Library
    23. O’Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, 137–146. Google ScholarDigital Library
    24. Öztireli, C., Guennebaud, G., and Gross, M. 2009. Feature preserving point set surfaces based on non-linear kernel regression. Comput. Graphics Forum (Proc. Eurographics) 28, 2.Google ScholarCross Ref
    25. Pipkin, A. C. 1986. The relaxed energy density for isotropic elastic membranes. IMA Journal of Applied Mathematics 36.Google Scholar
    26. Rohmer, D., Popa, T., Cani, M.-P., Hahmann, S., and Sheffer, A. 2010. Animation wrinkling: Augmenting coarse cloth simulations with realistic-looking wrinkles. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 29, 6. Google ScholarDigital Library
    27. Shatz, I., Tal, A., and Leifman, G. 2006. Paper craft models from meshes. The Visual Computer 22, 9. Google ScholarDigital Library
    28. Sheffer, A., Lévy, B., Mogilnitsky, M., and Bogomyakov, A. 2005. Abf++: Fast and robust angle based flattening. ACM Trans. Graph. 24, 2 (Apr.). Google ScholarDigital Library
    29. Shewchuk, J. R. 1996. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In Applied Computational Geometry: Towards Geometric Engineering, vol. 1148. Google ScholarDigital Library
    30. Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational design of rubber balloons. Comput. Graphics Forum (Proc. Eurographics) 31, 2. Google ScholarDigital Library
    31. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarDigital Library
    32. Solomon, J., Vouga, E., Wardetzky, M., and Grinspun, E. 2012. Flexible developable surfaces. Comput. Graphics Forum 31, 5. Google ScholarDigital Library
    33. Steigmann, D. J. 1990. Tension-field theory. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 429, 1876.Google ScholarCross Ref
    34. Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust quasistatic finite elements and flesh simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’05. Google ScholarDigital Library
    35. Tutte, W. T. 1963. How to draw a graph. Proc. London Math. Soc. 3, 13, 743767.Google Scholar
    36. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4. Google ScholarDigital Library
    37. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarDigital Library
    38. Wang, C. C., and Tang, K. 2010. Pattern computation for compression garment by a physical/geometric approach. Computer-Aided Design 42, 2. Google ScholarDigital Library
    39. Wang, C. 2008. Computing length-preserved free boundary for quasi-developable mesh segmentation. IEEE Transactions on Visualization and Computer Graphics 14, 1 (Jan.). Google ScholarDigital Library
    40. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4. Google ScholarDigital Library
    41. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3. Google ScholarDigital Library
    42. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: