“Deformation Embedded for Point-Based Elastoplastic Simulation” by Jones, Ward, Jallepalli, Perenia and Bargteil

  • ©

Conference:


Type(s):


Title:

    Deformation Embedded for Point-Based Elastoplastic Simulation

Session/Category Title:   Stretching & Flowing


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present a straightforward, easy-to-implement, point-based approach for animating elastoplastic materials. The core idea of our approach is the introduction of embedded space—the least-squares best fit of the material’s rest state into three dimensions. Nearest-neighbor queries in the embedded space efficiently update particle neighborhoods to account for plastic flow. These queries are simpler and more efficient than remeshing strategies employed in mesh-based finite element methods. We also introduce a new estimate for the volume of a particle, allowing particle masses to vary spatially and temporally with fixed density. Our approach can handle simultaneous extreme elastic and plastic deformations. We demonstrate our approach on a variety of examples that exhibit a wide range of material behaviors.

References:


    1. B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3, 48.
    2. R. Ando, N. Thurey, and R. Tsuruno. 2012. Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans. Vis. Comp. Graph. 18, 8, 1202–1214.
    3. A. W. Bargteil, C. Wojtan, J. K. Hodgins, and G. Turk. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3.
    4. H. Bhattacharya, Y. Gao, and A. W. Bargteil. 2011. A level-set method for skinning animated particle data. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
    5. J. U. Brackbill and H. M. Ruppel. 1986. Flip: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 314–343.
    6. R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of clothing with folds and wrinkles. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 28–36.
    7. P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O’Brien. 2013. Simulating liquids and solid-liquid interactions with lagrangian meshes. ACM Trans. Graph. 32, 2, 17:1–15.
    8. S. Clavet, P. Beaudoin, and P. Poulin. 2005. Particle-based viscoelastic fluid simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 219–228.
    9. K. Fleischer, A. Witkin, M. Kass, and D. Terzopoulos. 1987. Cooking with kurt. In Animation in ACM SIGGRAPH Video Review 36.
    10. D. Gerszewski, H. Bhattacharya, and A. W. Bargteil. 2009. A point-based method for animating elastoplastic solids. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
    11. T. G. Goktekin, A. W. Bargteil, and J. F. O’Brien. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463–468.
    12. T. G. Goktekin, J. Reisch, D. Peachey, and A. Shah. 2007. An effects recipe for rolling a dough, cracking an egg and pouring a sauce. ACM SIGGRAPH 2007 Sketches 67.
    13. F. Harlow and J. Welch. 1965. Numerical calculation of timedependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8, 2182–2189.
    14. F. H. Harlow. 1963. The particle-in-cell method for numerical solution of problems in fluid dynamics. Experimental arithmetic, high-speed computations and mathematics. In Proceedings of the Symposium in Applied Mathematics. Vol. 15, 269.
    15. G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the ACM/Eurographics Symposium on Computer Animation. 131–140.
    16. R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutre, and M. Gross. 2005. A unified lagrangian approach to solid-fluid animation. In Proceedings of the Symposium on Point-Based Graphics. 125–133.
    17. F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812–819.
    18. M. Muller, D. Charypar, and M. Gross. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 154–159.
    19. M. Muller and N. Chentanez. 2011. Solid simulation with oriented particles. ACM Trans. Graph. 30, 92.
    20. M. Muller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 141–151.
    21. R. Narain, T. Pfaff, and J. F. O’Brien. 2013. Folding and crumpling adaptive sheets. ACM Trans. Graph. 32, 4, 51:1–8.
    22. J. F. O’Brien, A. W. Bargteil, and J. K. Hodgins. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291–294.
    23. Allen Ruilova. 2007. Creating realistic cg honey. ACM SIGGRAPH 2007 Posters, 58.
    24. B. Solenthaler and M. Gross. 2011. Two-scale particle simulation. ACM Trans. Graph. 30, 4, 81:1–81:8.
    25. B. Solenthaler, J. Schlafli, and R. Pajarola. 2007. A unified particle model for fluid-solid interactions. J. Vis. Comput. Animation 18, 1, 69–82.
    26. A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 4, 102:1–102:10.
    27. D. Sulsky, Z. Chen, and H. L. Schreyer. 1994. A particle method for history-dependent materials. Comput. Methods Appl. Mechan. Engin. 118, 179–196.
    28. D. Terzopoulos and K. Fleischer. 1988. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’88). 269–278.
    29. D. Terzopoulos, J. Platt, and K. Fleischer. 1989. From goop to glop: Heating and melting deformable models. Proc. Graph. Interface 2, 2, 219–226.
    30. Dinos Tsiknis. 2006. Better cloth through unbiased strain limiting and physics-aware subdivision. M. S. thesis, University of British Columbia.
    31. M. Wicke, D. Ritchie, B. M. Klingner, S. Burke, J. R. Shewchuk, and J. F. O’Brien. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29, 49:1–49:11.
    32. Chris Wojtan and Greg Turk. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 47:1–47:8.

ACM Digital Library Publication:



Overview Page: