“Deformation Embedded for Point-Based Elastoplastic Simulation” by Jones, Ward, Jallepalli, Perenia and Bargteil
Conference:
Type(s):
Title:
- Deformation Embedded for Point-Based Elastoplastic Simulation
Session/Category Title: Stretching & Flowing
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We present a straightforward, easy-to-implement, point-based approach for animating elastoplastic materials. The core idea of our approach is the introduction of embedded space—the least-squares best fit of the material’s rest state into three dimensions. Nearest-neighbor queries in the embedded space efficiently update particle neighborhoods to account for plastic flow. These queries are simpler and more efficient than remeshing strategies employed in mesh-based finite element methods. We also introduce a new estimate for the volume of a particle, allowing particle masses to vary spatially and temporally with fixed density. Our approach can handle simultaneous extreme elastic and plastic deformations. We demonstrate our approach on a variety of examples that exhibit a wide range of material behaviors.
References:
- B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3, 48.
- R. Ando, N. Thurey, and R. Tsuruno. 2012. Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans. Vis. Comp. Graph. 18, 8, 1202–1214.
- A. W. Bargteil, C. Wojtan, J. K. Hodgins, and G. Turk. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3.
- H. Bhattacharya, Y. Gao, and A. W. Bargteil. 2011. A level-set method for skinning animated particle data. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
- J. U. Brackbill and H. M. Ruppel. 1986. Flip: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 314–343.
- R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of clothing with folds and wrinkles. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 28–36.
- P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O’Brien. 2013. Simulating liquids and solid-liquid interactions with lagrangian meshes. ACM Trans. Graph. 32, 2, 17:1–15.
- S. Clavet, P. Beaudoin, and P. Poulin. 2005. Particle-based viscoelastic fluid simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 219–228.
- K. Fleischer, A. Witkin, M. Kass, and D. Terzopoulos. 1987. Cooking with kurt. In Animation in ACM SIGGRAPH Video Review 36.
- D. Gerszewski, H. Bhattacharya, and A. W. Bargteil. 2009. A point-based method for animating elastoplastic solids. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
- T. G. Goktekin, A. W. Bargteil, and J. F. O’Brien. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463–468.
- T. G. Goktekin, J. Reisch, D. Peachey, and A. Shah. 2007. An effects recipe for rolling a dough, cracking an egg and pouring a sauce. ACM SIGGRAPH 2007 Sketches 67.
- F. Harlow and J. Welch. 1965. Numerical calculation of timedependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8, 2182–2189.
- F. H. Harlow. 1963. The particle-in-cell method for numerical solution of problems in fluid dynamics. Experimental arithmetic, high-speed computations and mathematics. In Proceedings of the Symposium in Applied Mathematics. Vol. 15, 269.
- G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the ACM/Eurographics Symposium on Computer Animation. 131–140.
- R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutre, and M. Gross. 2005. A unified lagrangian approach to solid-fluid animation. In Proceedings of the Symposium on Point-Based Graphics. 125–133.
- F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812–819.
- M. Muller, D. Charypar, and M. Gross. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 154–159.
- M. Muller and N. Chentanez. 2011. Solid simulation with oriented particles. ACM Trans. Graph. 30, 92.
- M. Muller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 141–151.
- R. Narain, T. Pfaff, and J. F. O’Brien. 2013. Folding and crumpling adaptive sheets. ACM Trans. Graph. 32, 4, 51:1–8.
- J. F. O’Brien, A. W. Bargteil, and J. K. Hodgins. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291–294.
- Allen Ruilova. 2007. Creating realistic cg honey. ACM SIGGRAPH 2007 Posters, 58.
- B. Solenthaler and M. Gross. 2011. Two-scale particle simulation. ACM Trans. Graph. 30, 4, 81:1–81:8.
- B. Solenthaler, J. Schlafli, and R. Pajarola. 2007. A unified particle model for fluid-solid interactions. J. Vis. Comput. Animation 18, 1, 69–82.
- A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 4, 102:1–102:10.
- D. Sulsky, Z. Chen, and H. L. Schreyer. 1994. A particle method for history-dependent materials. Comput. Methods Appl. Mechan. Engin. 118, 179–196.
- D. Terzopoulos and K. Fleischer. 1988. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’88). 269–278.
- D. Terzopoulos, J. Platt, and K. Fleischer. 1989. From goop to glop: Heating and melting deformable models. Proc. Graph. Interface 2, 2, 219–226.
- Dinos Tsiknis. 2006. Better cloth through unbiased strain limiting and physics-aware subdivision. M. S. thesis, University of British Columbia.
- M. Wicke, D. Ritchie, B. M. Klingner, S. Burke, J. R. Shewchuk, and J. F. O’Brien. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29, 49:1–49:11.
- Chris Wojtan and Greg Turk. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 47:1–47:8.