“Curve skeleton extraction from incomplete point cloud” by Tagliasacchi, Zhang and Cohen-Or
Conference:
Type(s):
Title:
- Curve skeleton extraction from incomplete point cloud
Presenter(s)/Author(s):
Abstract:
We present an algorithm for curve skeleton extraction from imperfect point clouds where large portions of the data may be missing. Our construction is primarily based on a novel notion of generalized rotational symmetry axis (ROSA) of an oriented point set. Specifically, given a subset S of oriented points, we introduce a variational definition for an oriented point that is most rotationally symmetric with respect to S. Our formulation effectively utilizes normal information to compensate for the missing data and leads to robust curve skeleton computation over regions of a shape that are generally cylindrical. We present an iterative algorithm via planar cuts to compute the ROSA of a point cloud. This is complemented by special handling of non-cylindrical joint regions to obtain a centered, topologically clean, and complete 1D skeleton. We demonstrate that quality curve skeletons can be extracted from a variety of shapes captured by incomplete point clouds. Finally, we show how our algorithm assists in shape completion under these challenges by developing a skeleton-driven point cloud completion scheme.
References:
1. Amenta, N., and Kil, Y. J. 2004. Defining point-set surfaces. ACM Trans. on Graph. 23, 3, 264–270. Google ScholarDigital Library
2. Au, O. K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., and Lee, T.-Y. 2008. Skeleton extraction by mesh contraction. ACM Trans. on Graph. 27, 3, 44:1–44:10. Google ScholarDigital Library
3. Blum, H. 1967. A transformation for extracting new descriptors of shape. Models for the perception of speech and visual form. MIT Press, 362–380.Google Scholar
4. Bouix, S., Siddiqi, K., Tannenbaum, A., and Zucker, S. 2006. Medial axis computation and evolution. Statistics and Analysis of Shapes.Google Scholar
5. Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., and Evans, T. R. 2001. Reconstruction and representation of 3D objects with radial basis functions. In Proc. of SIGGRAPH, 67–76. Google ScholarDigital Library
6. Chuang, J.-H., Ahuja, N., Lin, C.-C., Tsai, C.-H., and Chen, C.-H. 2004. A potential-based generalized cylinder representation. Computers & Graphics 28, 6, 907–918. Google ScholarDigital Library
7. Cornea, N. D., Min, P., and Silver, D. 2007. Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. & Comp. Graphics 13, 3, 530–548. Google ScholarDigital Library
8. de Aguiar, E., Theobalt, C., Thrun, S., and Seidel, H.-P. 2008. Automatic conversion of mesh animations into skeleton-based animations. Computer Graphics Forum (Proc. of Eurographics) 27, 2 (4), 389–397.Google Scholar
9. Dey, T., and Sun, J. 2006. Defining and computing curve-skeletons with medial geodesic function. In Symp. on Geom. Proc., 143–152. Google ScholarDigital Library
10. Giblin, P. J., and Brassett, S. A. 1985. Local symmetry of plane curves. American Mathematical Monthly, 689–707.Google Scholar
11. Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L. 2001. Topology matching for fully automatic similarity estimation of 3D shapes. In Proc. of SIGGRAPH, 203–212. Google ScholarDigital Library
12. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1992. Surface reconstruction from unorganized points. In Proc. of SIGGRAPH, 71–78. Google ScholarDigital Library
13. James, D., and Twigg, C. 2005. Skinning mesh animations. ACM Trans. on Graph. 24, 3, 399–407. Google ScholarDigital Library
14. Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. on Graph. 22, 3, 954–961. Google ScholarDigital Library
15. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Symmetry descriptors and 3D shape matching. In Symp. on Geom. Proc., 115–123. Google ScholarDigital Library
16. Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Symp. on Geom. Proc., 61–70. Google ScholarDigital Library
17. Kim, Y. J., Varadhan, G., Lin, M. C., and Manocha, D. 2003. Fast swept volume approximation of complex polyhedral models. In Proc. of Symp. on Solid Modeling and App., 11–22. Google ScholarDigital Library
18. Lee, I. 2000. Curve reconstruction from unorganized points. Computer Aided Geometric Design 17, 2, 161–177. Google ScholarDigital Library
19. Lehtinen, J., Zwicker, M., Turquin, E., Kontkanen, J., Durand, F., Sillion, F., and Aila, T. 2008. A meshless hierarchical representation for light transport. ACM Trans. on Graph. 27, 3, 37:1–37:10. Google ScholarDigital Library
20. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proc. of SIGGRAPH, 165–172. Google ScholarDigital Library
21. Li, X., Woon, T., Tan, T., and Huang, Z. 2001. Decomposing polygon meshes for interactive applications. In Proc. of Symposium on Interactive 3D graphics, 35–42. Google ScholarDigital Library
22. Lipman, Y., Cohen-Or, D., Levin, D., and Tal-Ezer, H. 2007. Parameterization-free projection for geometry reconstruction. ACM Trans. on Graph. 26(3), 22:1–22:6. Google ScholarDigital Library
23. Lu, L., Choi, Y.-K., Wang, W., and Kim, M.-S. 2007. Variational 3D shape segmentation for bounding volume computation. Computer Graphics Forum (Proc. of Eurographics) 26, 3, 329–338.Google ScholarCross Ref
24. Malandain, G., and Fernández-Vidal, S. 1998. Euclidean skeletons. Image and Vision Computing 16, 5, 317–327.Google ScholarCross Ref
25. Mitra, N., Guibas, L., and Pauly, M. 2006. Partial and approximate symmetry detection for 3D geometry. ACM Trans. on Graph. 25, 3, 560–568. Google ScholarDigital Library
26. Mitra, N. J., Flöry, S., Ovsjanikov, M., Gelfand, N., Guibas, L., and Pottmann, H. 2007. Dynamic geometry registration. In Symp. on Geom. Proc., 173–182. Google ScholarDigital Library
27. Nehab, D., Rusinkiewicz, S., Davis, J., and Ramamoorthi, R. 2005. Efficiently combining positions and normals for precise 3D geometry. ACM Trans. on Graph. 24, 3, 536–543. Google ScholarDigital Library
28. Ogniewicz, R., Ilg, M., and Zurich, E. 1992. Voronoi skeletons: theory and applications. In Proc. IEEE Conf. on Comp. Vis. and Pat. Rec., 63–69.Google Scholar
29. Ovsjanikov, M., Sun, J., and Guibas, L. 2008. Global intrinsic symmetries of shapes. In Computer Graphics Forum (Proc. of Symp. on Geom. Proc.), vol. 27, 1341–1348. Google ScholarDigital Library
30. Patane, G., Spagnuolo, M., and Falcidieno, B. 2008. Reeb graph computation based on a minimal contouring. In Proc. IEEE Conf. on Shape Modeling and App., 73–82.Google Scholar
31. Pekelny, Y., and Gotsman, C. 2008. Articulated object reconstruction and motion capture from depth video. Computer Graphics Forum (Proc. of Eurographics) 27, 2, 399–408.Google ScholarCross Ref
32. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3D shapes. ACM Trans. on Graph. 25, 3, 549–559. Google ScholarDigital Library
33. Raab, R., Gotsman, C., and Sheffer, A. 2004. Virtual woodwork: Making toys from geometric models. Int. J. of Shape Modeling 10, 1, 1–30.Google ScholarCross Ref
34. Sharf, A., Lewiner, T., Shamir, A., and Kobbelt, L. 2007. On-the-fly curve-skeleton computation for 3D shapes. Computer Graphics Forum (Proc. of Eurographics) 26, 3, 323–328.Google ScholarCross Ref
35. Sharf, A., Lewiner, T., Shklarski, G., Toledo, S., and Cohen-Or, D. 2007. Interactive topology-aware surface reconstruction. ACM Trans. on Graph. 26, 3, 43:1–43:10. Google ScholarDigital Library
36. Sharf, A., Alcantara, D. A., Lewiner, T., Greif, C., Sheffer, A., Amenta, N., and Cohen-Or, D. 2008. Space-time surface reconstruction using incompressible flow. ACM Trans. on Graph. 27, 5, 110:1–110:10. Google ScholarDigital Library
37. Siddiqi, K., and Pizer, S. 2009. Medial Representations: Mathematics, Algorithms and Applications. Springer. Google ScholarDigital Library
38. Simari, P. D., and Singh, K. 2005. Extraction and remeshing of ellipsoidal representations from mesh data. In Proc. of Graphics Interface, 161–168. Google ScholarDigital Library
39. Sorkine, O., and Cohen-Or, D. 2004. Least-squares meshes. In Proc. IEEE Conf. on Shape Modeling and App., 191–199. Google ScholarDigital Library
40. Thrun, S., and Wegbreit, B. 2005. Shape from symmetry. In Proc. of Int. Conf. on Comp. Vis., vol. 2, 1824–1831. Google ScholarDigital Library
41. Wand, M., Jenke, P., Huang, Q., Bokeloh, M., Guibas, L., and Schilling, A. 2007. Reconstruction of deforming geometry from time-varying point clouds. In Symp. on Geom. Proc., 49–58. Google ScholarDigital Library