“Covector fluids” by Nabizadeh, Wang, Ramamoorthi and Chern

  • ©Mohammad Sina Nabizadeh, Stephanie Wang, Ravi Ramamoorthi, and Albert Chern




    Covector fluids



    The animation of delicate vortical structures of gas and liquids has been of great interest in computer graphics. However, common velocity-based fluid solvers can damp the vortical flow, while vorticity-based fluid solvers suffer from performance drawbacks. We propose a new velocity-based fluid solver derived from a reformulated Euler equation using covectors. Our method generates rich vortex dynamics by an advection process that respects the Kelvin circulation theorem. The numerical algorithm requires only a small local adjustment to existing advection-projection methods and can easily leverage recent advances therein. The resulting solver emulates a vortex method without the expensive conversion between vortical variables and velocities. We demonstrate that our method preserves vorticity in both vortex filament dynamics and turbulent flows significantly better than previous methods, while also improving preservation of energy.


    1. Alexis Angelidis. 2017. Multi-scale vorticle fluids. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–12.Google ScholarDigital Library
    2. Alexis Angelidis and Fabrice Neyret. 2005. Simulation of smoke based on vortex filament primitives. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. 87–96.Google ScholarDigital Library
    3. Vladimir Arnold. 1966. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. In Annales de l’institut Fourier, Vol. 16. 319–361.Google Scholar
    4. Vladimir I. Arnold and Boris A. Khesin. 1998. Topological Methods in Hydrodynamics. Springer.Google ScholarDigital Library
    5. Omri Azencot, Steffen Weißmann, Maks Ovsjanikov, Max Wardetzky, and Mirela Ben-Chen. 2014. Functional fluids on surfaces. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 237–246.Google Scholar
    6. Robert D Blevins. 1990. Flow-induced vibration. New York (1990).Google Scholar
    7. Robert Bridson. 2015. Fluid simulation for computer graphics (2 ed.). CRC press.Google Scholar
    8. Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Citeseer, 87–95.Google Scholar
    9. Tomas F Buttke. 1993. Velicity methods: Lagrangian numerical methods which preserve the Hamiltonian structure of incompressible fluid flow. In Vortex flows and related numerical methods. Springer, 39–57.Google Scholar
    10. Augustin-Louis Cauchy. 1815. Théorie de la Propagation des Ondes a la Surface d’un Fluide Pesant d’une Profondeur Indéfinie. In Oeuvres Complètes d’Augustin Cauchy. Vol. 1. Imprimerie Royale. Presented to the French Academy in 1815 (published in 1827).Google Scholar
    11. Albert Chern. 2017. Fluid dynamics with incompressible Schrödinger flow. Ph.D. Dissertation. California Institute of Technology.Google Scholar
    12. Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2017. Inside fluids: Clebsch maps for visualization and processing. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–11.Google ScholarDigital Library
    13. Albert Chern, Felix Knöppel, Ulrich Pinkall, Peter Schröder, and Steffen Weißmann. 2016. Schrödinger’s smoke. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–13.Google ScholarDigital Library
    14. Norishige Chiba, Kazunobu Muraoka, Hiromichi Takahashi, and Mamoru Miura. 1994. Two-dimensional visual simulation of flames, smoke and the spread of fire. The Journal of Visualization and Computer Animation 5, 1 (1994), 37–53.Google ScholarCross Ref
    15. Chung-Ki Cho, Byungjoon Lee, and Seongjai Kim. 2018. Dual-Mesh Characteristics for Particle-Mesh Methods for the Simulation of Convection-Dominated Flows. SIAM Journal on Scientific Computing 40, 3 (2018), A1763–A1783.Google ScholarDigital Library
    16. Alexandre Joel Chorin. 1968. Numerical solution of the Navier-Stokes equations. Mathematics of computation 22, 104 (1968), 745–762.Google Scholar
    17. Alexandre Joel Chorin. 1990. Hairpin removal in vortex interactions. J. Comput. Phys. 91, 1 (1990), 1–21.Google ScholarDigital Library
    18. Alexandre Joel Chorin and Jerrold E Marsden. 1990. A mathematical introduction to fluid mechanics. Vol. 168. Springer.Google Scholar
    19. A. Clebsch. 1859. Ueber die Integration der hydrodynamischen Gleichungen. Journal für die reine und angewandte Mathematik 56 (1859), 1–10. English translation by D. H. Delphenich, http://www.neo-classical-physics.info/uploads/3/4/3/6/34363841/clebsch_-_clebsch_variables.pdf.Google ScholarCross Ref
    20. Ricardo Cortez. 1995. Impulse-based methods for fluid flow. Google ScholarCross Ref
    21. Georges-Henri Cottet, Petros D Koumoutsakos, et al. 2000. Vortex methods: theory and practice. Vol. 8. Cambridge university press Cambridge.Google Scholar
    22. Qiaodong Cui, Pradeep Sen, and Theodore Kim. 2018. Scalable laplacian eigenfluids. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–12.Google ScholarDigital Library
    23. Tyler De Witt, Christian Lessig, and Eugene Fiume. 2012. Fluid simulation using laplacian eigenfunctions. ACM Transactions on Graphics (TOG) 31, 1 (2012), 1–11.Google ScholarDigital Library
    24. Jean Délery. 2011. Separation in three-dimensional steady flow; Part 3: Topology of Some Remarkable Three-Dimensional Flows., 17–17 pages. https://www.onera.fr/sites/default/files/ressources_documentaires/cours-exposes-conf/onera-3d-separation-jean-delery-2011-2.pdfGoogle Scholar
    25. Jim Douglas, Jr and Thomas F Russell. 1982. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 5 (1982), 871–885.Google ScholarDigital Library
    26. Todd F Dupont and Yingjie Liu. 2003. Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. J. Comput. Phys. 190, 1 (2003), 311–324.Google ScholarDigital Library
    27. Weinan E and Jian-Guo Liu. 1997. Finite difference schemes for incompressible flows in the velocity-impulse density formulation. J. Comput. Phys. 130, 1 (1997), 67–76.Google ScholarDigital Library
    28. Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun. 2007. Stable, circulation-preserving, simplicial fluids. ACM Transactions on Graphics (TOG) 26, 1 (2007), 4–es.Google ScholarDigital Library
    29. Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual simulation of smoke. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques. 15–22.Google ScholarDigital Library
    30. Fan Feng, Jinyuan Liu, Shiying Xiong, Shuqi Yang, Yaorui Zhang, and Bo Zhu. 2022. Impulse Fluid Simulation. IEEE Transactions on Visualization and Computer Graphics (2022).Google ScholarCross Ref
    31. Nick Foster and Dimitris Metaxas. 1997. Modeling the motion of a hot, turbulent gas. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. 181–188.Google ScholarDigital Library
    32. Uriel Frisch and Barbara Villone. 2014. Cauchy’s almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow. The European Physical Journal H 39, 3 (2014), 325–351.Google ScholarCross Ref
    33. Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A polynomial particle-in-cell method. ACM Transactions on Graphics (TOG) 36, 6 (2017), 1–12.Google ScholarDigital Library
    34. Eitan Grinspun, Mathieu Desbrun, Konrad Polthier, Peter Schröder, and Ari Stern. 2006. Discrete differential geometry: an applied introduction. ACM Siggraph Course 7, 1 (2006).Google Scholar
    35. Hermann Hankel. 1861. Zur allgemeinen Theorie der Bewegung der Flüssigkeiten. Dieterichsche Univ.-Buchdruckerei, Göttingen. For an English translation see [Villone and Rampf 2017].Google Scholar
    36. Francis H Harlow and J Eddie Welch. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The physics of fluids 8, 12 (1965), 2182–2189.Google Scholar
    37. Anil Nirmal Hirani. 2003. Discrete exterior calculus. California Institute of Technology.Google ScholarDigital Library
    38. Darryl D Holm, Boris A Kupershmidt, and C David Levermore. 1983. Canonical maps between Poisson brackets in Eulerian and Lagrangian descriptions of continuum mechanics. Physics Letters A 98, 8–9 (1983), 389–395.Google ScholarCross Ref
    39. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–10.Google ScholarDigital Library
    40. ByungMoon Kim, Yingjie Liu, Ignacio Llamas, and Jaroslaw R Rossignac. 2005. Flowfixer: Using BFECC for fluid simulation. Technical Report. Georgia Institute of Technology.Google Scholar
    41. Dustin Kleckner and William TM Irvine. 2013. Creation and dynamics of knotted vortices. Nature physics 9, 4 (2013), 253–258.Google Scholar
    42. JL Lagrange. 1788. Méchanique Analitique. A Paris, Chez La Veuve Desaint.Google Scholar
    43. Randall J LeVeque. 2002. Finite volume methods for hyperbolic problems. Vol. 31. Cambridge university press.Google Scholar
    44. Wei Li, Kai Bai, and Xiaopei Liu. 2018. Continuous-scale kinetic fluid simulation. IEEE transactions on visualization and computer graphics 25, 9 (2018), 2694–2709.Google Scholar
    45. Wei Li, Yixin Chen, Mathieu Desbrun, Changxi Zheng, and Xiaopei Liu. 2020. Fast and scalable turbulent flow simulation with two-way coupling. ACM Transactions on Graphics 39, 4 (2020), Art-No.Google ScholarDigital Library
    46. Beibei Liu, Gemma Mason, Julian Hodgson, Yiying Tong, and Mathieu Desbrun. 2015. Model-reduced variational fluid simulation. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1–12.Google ScholarDigital Library
    47. Frank Losasso, Ronald Fedkiw, and Stanley Osher. 2006. Spatially adaptive techniques for level set methods and incompressible flow. Computers & Fluids 35, 10 (2006), 995–1010.Google ScholarCross Ref
    48. Chaoyang Lyu, Wei Li, Mathieu Desbrun, and Xiaopei Liu. 2021. Fast and versatile fluid-solid coupling for turbulent flow simulation. ACM Transactions on Graphics (TOG) 40, 6 (2021), 1–18.Google ScholarDigital Library
    49. Jerrold Marsden and Alan Weinstein. 1983. Coadjoint Orbits, Vortices, and Clebsch Variables for Incompressible Fluids. Physica D: Nonlinear Phenomena 7, 1 (1983), 305–323.Google ScholarCross Ref
    50. Alexander George McKenzie. 2007. HOLA: a High-Order Lie Advection of Discrete Differential Forms With Applications in Fluid Dynamics. Master’s thesis. California Institute of Technology.Google Scholar
    51. Philip J Morrison. 1998. Hamiltonian description of the ideal fluid. Reviews of modern physics 70, 2 (1998), 467.Google Scholar
    52. Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu Desbrun. 2009. Energy-preserving integrators for fluid animation. ACM Transactions on Graphics (TOG) 28, 3 (2009), 1–8.Google ScholarDigital Library
    53. Patrick Mullen, Alexander McKenzie, Dmitry Pavlov, Luke Durant, Yiying Tong, Eva Kanso, Jerrold E Marsden, and Mathieu Desbrun. 2011. Discrete Lie advection of differential forms. Foundations of Computational Mathematics 11, 2 (2011), 131–149.Google ScholarDigital Library
    54. David Mumford and Peter W Michor. 2012. On Euler’s equation and ‘EPDiff’. arXiv preprint arXiv:1209.6576 (2012).Google Scholar
    55. Rahul Narain, Jonas Zehnder, and Bernhard Thomaszewski. 2019. A second-order advection-reflection solver. Proceedings of the ACM on Computer Graphics and Interactive Techniques 2, 2 (2019), 1–14.Google ScholarDigital Library
    56. Tristan Needham. 2021. Visual Differential Geometry and Forms: A Mathematical Drama in Five Acts. Princeton University Press.Google Scholar
    57. VI Oseledets. 1989. On a new way of writing the Navier-Stokes equation. The Hamiltonian formalism. Russ. Math. Surveys 44 (1989), 210–211.Google ScholarCross Ref
    58. Marcel Padilla, Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2019. On bubble rings and ink chandeliers. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–14.Google ScholarDigital Library
    59. Sang Il Park and Myoung Jun Kim. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. 261–270.Google ScholarDigital Library
    60. Dmitry Pavlov, Patrick Mullen, Yiying Tong, Eva Kanso, Jerrold E Marsden, and Mathieu Desbrun. 2011. Structure-preserving discretization of incompressible fluids. Physica D: Nonlinear Phenomena 240, 6 (2011), 443–458.Google ScholarCross Ref
    61. Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian vortex sheets for animating fluids. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1–8.Google ScholarDigital Library
    62. Ziyin Qu, Xinxin Zhang, Ming Gao, Chenfanfu Jiang, and Baoquan Chen. 2019. Efficient and conservative fluids using bidirectional mapping. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–12.Google ScholarDigital Library
    63. Miodrag Rančić and Gordana Sindjić. 1989. Noninterpolating semi-Lagrangian advection scheme with minimized dissipation and dispersion errors. Monthly weather review 117, 8 (1989), 1906–1911.Google Scholar
    64. Giovanni Russo and Peter Smereka. 1999. Impulse formulation of the Euler equations: general properties and numerical methods. Journal of Fluid Mechanics 391 (1999), 189–209.Google ScholarCross Ref
    65. Takahiro Sato, Christopher Batty, Takeo Igarashi, and Ryoichi Ando. 2018. Spatially adaptive long-term semi-Lagrangian method for accurate velocity advection. Computational Visual Media 4, 3 (2018), 223–230.Google ScholarCross Ref
    66. John Stanley Sawyer. 1963. A semi-Lagrangian method of solving the vorticity advection equation. Tellus 15, 4 (1963), 336–342.Google ScholarCross Ref
    67. Robert Saye. 2016. Interfacial gauge methods for incompressible fluid dynamics. Science advances 2, 6 (2016), e1501869.Google Scholar
    68. Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008. An unconditionally stable MacCormack method. Journal of Scientific Computing 35, 2 (2008), 350–371.Google ScholarDigital Library
    69. Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A vortex particle method for smoke, water and explosions. In ACM SIGGRAPH 2005 Papers. 910–914.Google ScholarDigital Library
    70. Jos Stam. 1999. Stable fluids. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques. 121–128.Google ScholarDigital Library
    71. Andrew Staniforth and Jean Côté. 1991. Semi-Lagrangian integration schemes for atmospheric models—A review. Monthly weather review 119, 9 (1991), 2206–2223.Google Scholar
    72. John Steinhoff and David Underhill. 1994. Modification of the Euler equations for “vorticity confinement”: Application to the computation of interacting vortex rings. Physics of Fluids 6, 8 (1994), 2738–2744.Google ScholarCross Ref
    73. Gilbert Strang. 1968. On the construction and comparison of difference schemes. SIAM journal on numerical analysis 5, 3 (1968), 506–517.Google Scholar
    74. Roger Temam. 1969. Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II). Archive for rational mechanics and analysis 33, 5 (1969), 377–385.Google Scholar
    75. Jerry Tessendorf and Brandon Pelfrey. 2011. The characteristic map for fast and efficient vfx fluid simulations. In Computer Graphics International Workshop on VFX, Computer Animation, and Stereo Movies. Ottawa, Canada.Google Scholar
    76. William Thomson. 1868. On Vortex Motion. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 25, 1 (1868), 217–260.Google ScholarCross Ref
    77. Barbara Villone and Cornelius Rampf. 2017. Hermann Hankel’s “On the general theory of motion of fluids”. The European Physical Journal H 42, 4 (2017), 557–609.Google Scholar
    78. Heinrich Martin Weber. 1868. Ueber eine Transformation der hydrodynamischen Gleichungen. Journal für die reine und angewandte Mathematik 68 (1868), 286–292.Google Scholar
    79. Steffen Weißmann and Ulrich Pinkall. 2009. Real-time Interactive Simulation of Smoke Using Discrete Integrable Vortex Filaments. In Workshop in Virtual Reality Interactions and Physical Simulation “VRIPHYS” (2009), Hartmut Prautzsch, Alfred Schmitt, Jan Bender, and Matthias Teschner (Eds.). The Eurographics Association. Google ScholarCross Ref
    80. Steffen Weißmann and Ulrich Pinkall. 2010. Filament-based smoke with vortex shedding and variational reconnection. In ACM SIGGRAPH 2010 papers. 1–12.Google ScholarDigital Library
    81. Shiying Xiong, Rui Tao, Yaorui Zhang, Fan Feng, and Bo Zhu. 2021. Incompressible Flow Simulation on Vortex Segment Clouds. ACM Transactions on Graphics (TOG) 40, 4 (2021), 98:1–98:11.Google ScholarDigital Library
    82. Larry Yaeger, Craig Upson, and Robert Myers. 1986. Combining physical and visual simulation—creation of the planet jupiter for the film “2010”. Acm Siggraph Computer Graphics 20, 4 (1986), 85–93.Google ScholarDigital Library
    83. Shuqi Yang, Shiying Xiong, Yaorui Zhang, Fan Feng, Jinyuan Liu, and Bo Zhu. 2021. Clebsch gauge fluid. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–11.Google ScholarDigital Library
    84. Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. 2018. An advection-reflection solver for detail-preserving fluid simulation. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–8.Google ScholarDigital Library
    85. Xinxin Zhang and Robert Bridson. 2014. A PPPM fast summation method for fluids and beyond. ACM Transactions on Graphics (TOG) 33, 6 (2014), 1–11.Google ScholarDigital Library
    86. Xinxin Zhang, Robert Bridson, and Chen Greif. 2015. Restoring the missing vorticity in advection-projection fluid solvers. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–8.Google ScholarDigital Library
    87. Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions on Graphics (TOG) 24, 3 (2005), 965–972.Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: