“Coupling water and smoke to thin deformable and rigid shells” by Guendelman, Selle, Losasso and Fedkiw

  • ©Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw




    Coupling water and smoke to thin deformable and rigid shells



    We present a novel method for solid/fluid coupling that can treat infinitesimally thin solids modeled by a lower dimensional triangulated surface. Since classical solid/fluid coupling algorithms rasterize the solid body onto the fluid grid, an entirely new approach is required to treat thin objects that do not contain an interior region. Robust ray casting is used to augment a number of interpolation, finite difference and rendering techniques so that fluid does not leak through the triangulated surface. Moreover, we propose a technique for properly enforcing incompressibility so that fluid does not incorrectly compress (and appear to lose mass) near the triangulated surface. This allows for the robust interaction of cloth and shells with thin sheets of water. The proposed method works for both rigid body shells and for deformable manifolds such as cloth, and we present a two way coupling technique that allows the fluid’s pressure to affect the solid. Examples illustrate that our method performs well, especially in the difficult case of water and cloth where it produces visually rich interactions between the particle level set method for treating the water/air interface and our newly proposed method for treating the solid/fluid interface. We have implemented the method on both uniform and adaptive octree grids.


    1. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proc. SIGGRAPH 98, 1–12. Google ScholarDigital Library
    2. Baraff, D., Witkin, A., and Kass, M. 2003. Untangling cloth. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 862–870. Google ScholarDigital Library
    3. Baraff, D. 1993. Issues in computing contact forces for non-penetrating rigid bodies. Algorithmica, 10, 292–352.Google ScholarDigital Library
    4. Baraff, D. 1994. Fast contact force computation for nonpenetrating rigid bodies. In Proc. SIGGRAPH 94, 23–34. Google ScholarDigital Library
    5. Benson, D. 1992. Computational methods in lagrangian and eulerian hydrocodes. Comput. Meth. in Appl. Mech. and Eng. 99, 235–394. Google ScholarDigital Library
    6. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 594–603. Google ScholarDigital Library
    7. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 28–36. Google ScholarDigital Library
    8. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 377–384. Google ScholarDigital Library
    9. Chen, J., and Lobo, N. 1994. Toward interactive-rate simulation of fluids with moving obstacles using the navier-stokes equations. Computer Graphics and Image Processing 57, 107–116. Google ScholarDigital Library
    10. Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 604–611. Google ScholarDigital Library
    11. Cohen, J. M., and Molemaker, M. J. 2004. Practical simulation of surface tension flows. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarDigital Library
    12. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736–744. Google ScholarDigital Library
    13. Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proc. 4th ASME-JSME Joint Fluids Eng. Conf., no. FEDSM2003-45144, ASME.Google Scholar
    14. Enright, D., Losasso, F., and Fedkiw, R. 2005. A fast and accurate semi-Lagrangian particle level set method. Computers and Structures 83, 479–490. Google ScholarDigital Library
    15. Fattal, R., and Lischinski, D. 2004. Target-driven smoke animation. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 441–448. Google ScholarDigital Library
    16. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15–22. Google ScholarDigital Library
    17. Fedkiw, R. 2002. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J. Comput. Phys. 175, 200–224. Google ScholarDigital Library
    18. Feldman, B. E., O’Brien, J. F., and Arikan, O. 2003. Animating suspended particle explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 22,3,708–715. Google ScholarDigital Library
    19. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proc. of ACM SIGGRAPH 2001, 23–30. Google ScholarDigital Library
    20. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models and Image Processing 58, 471–483. Google ScholarDigital Library
    21. Foster, N., and Metaxas, D. 1997. Controlling fluid animation. In Computer Graphics International 1997, 178–188. Google ScholarDigital Library
    22. Foster, N., and Metaxas, D. 1997. Modeling the motion of a hot, turbulent gas. In Proc. of SIGGRAPH 97, 181–188. Google ScholarDigital Library
    23. Génevaux, O., HABIBI, A., AND DISCHLER, J.-M. 2003. Simulating fluid-solid interaction. In Graphics Interface, 31–38.Google Scholar
    24. Goktekin, T. G., Bargteil. A. W., and O’Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 23. Google ScholarDigital Library
    25. Grinspun, E., Hirani, A., Desbrun, M., and Schroder, P. 2003. Discrete shells. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 62–67. Google ScholarDigital Library
    26. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Nonconvex rigid bodies with stacking. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 871–878. Google ScholarDigital Library
    27. Hadap, S., and Magnenat-Thalmann, N. 2001. Modeling Dynamic Hair as a Continuum. Comput. Graph. Forum 20, 3.Google ScholarCross Ref
    28. Hahn, J. K. 1988. Realistic animation of rigid bodies. Comput. Graph. (Proc. SIGGRAPH 88) 22, 4,299–308. Google ScholarDigital Library
    29. Hong, J.-M., and Kim, C.-H. 2003. Animation of bubbles in liquid. Comp. Graph. Forum (Eurographics Proc.) 22, 3, 253–262.Google ScholarCross Ref
    30. Houston, B., Wiebe, M., and Batty, C. 2004. Rle sparse level sets. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarDigital Library
    31. Iversen, J., and Sakaguchi, R. 2004. Growing up with fluid simulation on “the day after tomorrow”. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarDigital Library
    32. Kang, M., Fedkiw, R., and Liu, X.-D. 2000. A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 323–360. Google ScholarDigital Library
    33. Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. In Computer Graphics (Proc. of SIGGRAPH 90), vol. 24, 49–57. Google ScholarDigital Library
    34. Kondoh, N., Kunimatsu, A., and Sasagawa, S. 2004. Creating animations of fluids and cloth with moving characters. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarDigital Library
    35. Lamorlette, A., and Foster, N. 2002. Structural modeling of natural flames. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 729–735. Google ScholarDigital Library
    36. Li, Z., and Lai, M.-C. 2001. The immersed interface method for navier-stokes equations with singular forces. J. Comput. Phys. 171, 822–842. Google ScholarDigital Library
    37. Ling, L., Damodaran, M., and Gay, K. 1996. Aerodynamic force models for animating cloth motion in air flow. In The Visual Computer, 84–104.Google Scholar
    38. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.), 457–462. Google ScholarDigital Library
    39. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. (SIGGRAPH Proc.). Google ScholarDigital Library
    40. Mihalef, V., Metaxas, D., and Sussman, M. 2004. Animation and control of breaking waves. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 315–324. Google ScholarDigital Library
    41. Moore, M., and Wilhelms, J. 1988. Collision detection and response for computer animation. Comput. Graph. (Proc. SIGGRAPH 88) 22, 4, 289–298. Google ScholarDigital Library
    42. Muller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 154–159. Google ScholarDigital Library
    43. Muller, M., Schirm, S., Teschner, M., Heidelberger, B., and Gross, M. 2004. Interaction of fluids with deformable solids. J. Comput. Anim. and Virt. Worlds 15, 3–4 (July), 159–171. Google ScholarDigital Library
    44. Nguyen, D., Fedkiw, R., and Jensen, H. 2002. Physically based modeling and animation of fire. In ACM Trans. Graph. (SIGGRAPH Proc.), vol. 29, 721–728. Google ScholarDigital Library
    45. Nixon, D., and Lobb, R. 2002. A fluid-based soft-object model. IEEE Comput. Graph. Appl. 22, 4, 68–75. Google ScholarDigital Library
    46. Noh, W. 1964. CEL: A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code. Academic Press, New York, 117–179.Google Scholar
    47. Osher, S., and Fedkiw, R. 2002. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag. New York, NY.Google Scholar
    48. Peskin, C. 1972. Flow patterns around heart valves: A numerical method. J. Comput. Phys. 10, 252–271.Google ScholarCross Ref
    49. Peskin, C. 2002. The immersed boundary method. Acta Numerica 11, 479–517.Google ScholarCross Ref
    50. Peyret, R., and Taylor, T. D. 1983. Computational methods for fluid flow. Springer-Verlag. New York.Google Scholar
    51. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. 2003. Particle-based simulation of fluids. In Comp. Graph. Forum (Eurographics Proc.), vol. 22, 401–410.Google ScholarCross Ref
    52. Rasmussen, N., Nguyen, D., Geiger, W., and Fedkiw, R. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 703–707. Google ScholarDigital Library
    53. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directible photorealistic liquids. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 193–202. Google ScholarDigital Library
    54. Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121–128. Google ScholarDigital Library
    55. Stam, J. 2003. Flows on surfaces of arbitrary topology. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 724–731. Google ScholarDigital Library
    56. Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. ACM Trans. Graph. (SIGGRAPH Proc.) 22,3, 716–723. Google ScholarDigital Library
    57. Wei, X., Zhao, Y., Fan, Z., Li, W., Yoakum-Stover, S., and Kaufman, A. 2003. Blowing in the wind. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 75–85. Google ScholarDigital Library
    58. Wejchert, J., and Haumann, D. 1991. Animation Aerodynamics. Comput. Graph. 25, 4, 19–22. Google ScholarDigital Library
    59. Wiebe, M., and Houston, B. 2004. The tar monster: Creating a character with fluid simulation. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarDigital Library
    60. Yngve, G., O’Brien, J., and Hodgins, J. 2000. Animating explosions. In Proc. SIGGRAPH 2000, vol. 19, 29–36. Google ScholarDigital Library
    61. Zhu, L., and Peskin, C. 2002. Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys. 179, 452–468. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: