“Content-adaptive lenticular prints” by Tompkin, Heinzle, Kautz and Matusik

  • ©James Tompkin, Simon Heinzle, Jan Kautz, and Wojciech Matusik

Conference:


Type:


Title:

    Content-adaptive lenticular prints

Session/Category Title: Display Hardware


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Lenticular prints are a popular medium for producing automultiscopic glasses-free 3D images. The light field emitted by such prints has a fixed spatial and angular resolution. We increase both perceived angular and spatial resolution by modifying the lenslet array to better match the content of a given light field. Our optimization algorithm analyzes the input light field and computes an optimal lenslet size, shape, and arrangement that best matches the input light field given a set of output parameters. The resulting emitted light field shows higher detail and smoother motion parallax compared to fixed-size lens arrays. We demonstrate our technique using rendered simulations and by 3D printing lens arrays, and we validate our approach in simulation with a user study.

References:


    1. Berkel, C. V. 1999. Image preparation for 3D-LCD. Proc. SPIE Stereoscopic Displays and Virtual Reality Systems 3639, 84–91.Google Scholar
    2. Chai, J.-X., Tong, X., Chan, S.-C., and Shum, H.-Y. 2000. Plenoptic sampling. In Proc. SIGGRAPH, 307–318. Google ScholarDigital Library
    3. Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., and Favalora, G. E. 2007. Occlusion-capable multiview volumetric three-dimensional display. Applied Optics 46, 1244–1250.Google ScholarCross Ref
    4. Cox, W. R., Chen, T., and Hayes, D. J. 2001. Micro-optics fabrication by ink-jet printers. Optics and Photonics News 12, 6, 32–35.Google ScholarCross Ref
    5. Cruz-Campa, J. L., Okandan, M. O., Busse, M. L., and Nielson, G. N. 2010. Microlens rapid prototyping technique with capability for wide variation in lens diameter and focal length. Microelectronic Engineering 87, 11. Google ScholarDigital Library
    6. Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A frequency analysis of light transport. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 1115–1126. Google ScholarDigital Library
    7. Fuchs, M., Raskar, R., Seidel, H.-P., and Lensch, H. P. A. 2008. Towards passive 6d reflectance field displays. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3, 58:1–58:8. Google ScholarDigital Library
    8. Gooch, A. A., Olsen, S. C., Tumblin, J., and Gooch, B. 2005. Color2gray: salience-preserving color removal. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3, 634–639. Google ScholarDigital Library
    9. Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3, 33:1–33:10. Google ScholarDigital Library
    10. Hardy, G. H., and Ramanujan, S. 1918. Asymptotic formulae in combinatorial analysis. In Proc. London Math. Soc., vol. 17, 75–115.Google ScholarCross Ref
    11. Holroyd, M., Baran, I., Lawrence, J., and Matusik, W. 2011. Computing and fabricating multilayer models. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 30, 6, 187:1–187:8. Google ScholarDigital Library
    12. Isono, H., Yasuda, M., and Sasazawa, H. 1993. Autostereoscopic 3-D display using LCD-generated parallax barrier. Electronics and Communications in Japan 76, 7, 77–84.Google Scholar
    13. Ives, F., 1903. Parallax stereogram and process for making same. U.S. Patent No. 725,567.Google Scholar
    14. Jain, A., and Konrad, J. 2007. Crosstalk in automultiscopic 3-D displays: blessing in disguise? Proc. SPIE Stereoscopic Displays and Virtual Reality Systems 6490, 649012.Google ScholarCross Ref
    15. Jang, J.-S., and Javidi, B. 2002. Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics. Optics Letters 27, 5, 324–326.Google ScholarCross Ref
    16. Jang, J.-S., and Javidi, B. 2003. Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes. Optics Letters 28, 1924–1926.Google ScholarCross Ref
    17. Johnson, R. B., and Jacobsen, G. A. 2005. Advances in lenticular lens arrays for visual display. In Proc. SPIE 5874.Google Scholar
    18. Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360 light field display. ACM Trans. Graph. 26, 3, 40:1–40:10. Google ScholarDigital Library
    19. Kao, Y.-Y., Huang, Y.-P., Yang, K.-X., Chao, P. C.-P., Tsai, C.-C., and Mo, C.-N. 2009. An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array. SID Symposium Digest of Technical Papers 40, 111–114.Google ScholarCross Ref
    20. Kim, Y., Park, J.-H., Min, S.-W., Jung, S., Choi, H., and Lee, B. 2005. Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array. Applied Optics 44, 546–552.Google ScholarCross Ref
    21. Kim, Y., Kim, J., Kang, J.-M., Jung, J.-H., Choi, H., and Lee, B. 2007. Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array. Optics Express 15, 26, 18253–18267.Google ScholarCross Ref
    22. Kim, Y., Hong, K., and Lee, B. 2010. Recent researches based on integral imaging display method. 3D Research 1, 17–27. Google ScholarDigital Library
    23. Kim, S.-C., Kim, C.-K., and Kim, E.-S. 2011. Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique. 3D Research 2, 2, 6. Google ScholarDigital Library
    24. Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., and Gross, M. 2013. Scene reconstruction from high spatio-angular resolution light fields. To appear ACM Trans. Graph. (Proc. SIGGRAPH). Google ScholarDigital Library
    25. Kweon, G.-I., and Kim, C.-H. 2007. Aspherical lens design by using a numerical analysis. Journal of the Korean Physical Society 51, 1, 93–103.Google ScholarCross Ref
    26. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 6, 163:1–163:10. Google ScholarDigital Library
    27. Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: dynamic light field display using multi-layer LCDs. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 6 (Dec.), 186:1–186:10. Google ScholarDigital Library
    28. Lehtinen, J., Aila, T., Chen, J., Laine, S., and Durand, F. 2011. Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4, 55:1–55:12. Google ScholarDigital Library
    29. Lippmann, G. M. 1908. La photographie integrale. Comptes-Rendus 146, 446–451.Google Scholar
    30. Lueder, E. 2012. 3D Displays. Wiley.Google Scholar
    31. Nashel, A., and Fuchs, H. 2009. Random Hole Display: A non-uniform barrier autostereoscopic display. In 3DTV Conference: The True Vision — Capture, Transmission and Display of 3D Video, 1–4.Google Scholar
    32. Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Computer Graphics Forum 30, 2, 503–511.Google ScholarCross Ref
    33. Papas, M., Houit, T., Nowrouzezahrai, D., Gross, M., and Jarosz, W. 2012. The magic lens: Refractive steganography. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6, 186:1–186:10. Google ScholarDigital Library
    34. Park, J.-H., Kim, J., Kim, Y., and Lee, B. 2005. Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging. Optics Express 13, 1875–1884.Google ScholarCross Ref
    35. Perlin, K., Paxia, S., and Kollin, J. S. 2000. An autostereoscopic display. In Proc. of SIGGRAPH, 319–326. Google ScholarDigital Library
    36. Peterka, T., Kooima, R. L., Sandin, D. J., Johnson, A., Leigh, J., and DeFanti, T. A. 2008. Advances in the dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system. IEEE T. VIS. COMPUT. GR. 14, 3, 487–499. Google ScholarDigital Library
    37. Ramachandra, V., Hirakawa, K., Zwicker, M., and Nguyen, T. 2011. Spatio-angular prefiltering for multiview 3D displays. IEEE T. VIS. COMPUT. GR. 17, 5, 642–654. Google ScholarDigital Library
    38. Said, A., and Talvala, E.-V. 2009. Spatial-angular analysis of displays for reproduction of light fields. Proc. SPIE 7237.Google Scholar
    39. Sajadi, B., Gopi, M., and Majumder, A. 2012. Edge-guided resolution enhancement in projectors via optical pixel sharing. ACM Trans. Graph. 31, 4 (July), 79:1–79:122. Google ScholarDigital Library
    40. Schnars, U., and Jüpter, W. 2005. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer.Google Scholar
    41. Smith, W. J. 2007. Modern optical engineering. SPIE Press.Google Scholar
    42. Sun, H.-b., and Kawata, S., 2004. Two-photon photopolymerization and 3d lithographic microfabrication.Google Scholar
    43. Takahashi, H., Fujinami, H., and Yamada, K. 2006. Wide-viewing-angle three-dimensional display system using hoe lens array. Proc. SPIE 6055, 60551C-1–60551C-9.Google Scholar
    44. Ueda, K., Koike, T., Takahashi, K., and Naemura, T. 2008. Adaptive integral photography imaging with variable-focus lens array. Proc. SPIE 6803.Google Scholar
    45. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4, 95:1–95:12. Google ScholarDigital Library
    46. Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4, 80:1–80:11. Google ScholarDigital Library
    47. Willis, K., Brockmeyer, E., Hudson, S., and Poupyrev, I. 2012. Printed optics: 3d printing of embedded optical elements for interactive devices. In ACM Symposium on User Interface Software and Technology, 589–598. Google ScholarDigital Library
    48. Wu, M.-H., Park, C., and Whitesides, G. 2002. Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography. Langmuir 18, 24.Google ScholarCross Ref
    49. Zebra Imaging, 2013. ZScape® digital holographic prints. http://www.zebraimaging.com.Google Scholar
    50. Zwicker, W., Matusik, W., Dur, F., Pfister, H., Zwicker, M., Matusik, W., Durand, F., and Pfister, H. 2006. Antialiasing for automultiscopic 3D displays. In Eurographics Symposium on Rendering, 73–82. Google ScholarDigital Library
    51. Zwicker, M., Vetro, A., Yea, S., Matusik, W., Pfister, H., and Durand, F. 2007. Resampling, antialiasing, and compression in multiview 3-D displays. IEEE Signal Processing Magazine 24, 6 (Nov.), 88–96.Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page: