“Constraint-based motion optimization using a statistical dynamic model” by Chai and Hodgins
Conference:
Type(s):
Title:
- Constraint-based motion optimization using a statistical dynamic model
Presenter(s)/Author(s):
Abstract:
In this paper, we present a technique for generating animation from a variety of user-defined constraints. We pose constraint-based motion synthesis as a maximum a posterior (MAP) problem and develop an optimization framework that generates natural motion satisfying user constraints. The system automatically learns a statistical dynamic model from motion capture data and then enforces it as a motion prior. This motion prior, together with user-defined constraints, comprises a trajectory optimization problem. Solving this problem in the low-dimensional space yields optimal natural motion that achieves the goals specified by the user. We demonstrate the effectiveness of this approach by generating whole-body and facial motion from a variety of spatial-temporal constraints.
References:
1. Abe, Y., Liu, C. K., and Popović, Z. 2004. Momentum-based parameterization of dynamic character motion. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 173–182. Google ScholarDigital Library
2. Arikan, O., and Forsyth, D. A. 2002. Interactive motion generation from examples. In ACM Transactions on Graphics. 21(3):483–490. Google ScholarDigital Library
3. Bazaraa, M. S., Sherali, H. D., and Shetty, C. 1993. Nonl-inear Programming: Theory and Algorithms. John Wiley and Sons Ltd. 2nd Edition.Google Scholar
4. Bishop, C. 1996. Neural Network for Pattern Recognition. Cambridge University Press. Google ScholarDigital Library
5. Brand, M., and Hertzmann, A. 2000. Style machines. In Proceedings of ACM ACM SIGGRAPH 2000. 183–192. Google ScholarDigital Library
6. Brand, M. E. 1999. Voice puppetry. In Proceedings of ACM SIGGRAPH 1999. 21–28. Google ScholarDigital Library
7. Bregler, C., Covell, M., and Slaney, M. 1997. Video rewrite: Driving visual speech with audio. In Proceedings of ACM SIGGRAPH 1997. 353–360. Google ScholarDigital Library
8. Chai, J., and Hodgins, J. 2005. Performance animation from low-dimensional control signals. In ACM Transactions on Graphics. 24(3):686–696. Google ScholarDigital Library
9. Chai, J., Xiao, J., and Hodgins, J. 2003. Vision-based control of 3d facial animation. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 193–206. Google ScholarDigital Library
10. Fang, A., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. In ACM Transactions on Graphics. 22(3):417–426. Google ScholarDigital Library
11. Galata, A., Johnson, N., and Hogg, D. 2001. Learning variable length markov models of behavior. In Computer Vision and Image Understanding (CVIU) Journal. 81(3):398–413. Google ScholarDigital Library
12. Gleicher, M. 1998. Retargeting motion to new characters. In Proceedings of ACM SIGGRAPH 1998. 33–42. Google ScholarDigital Library
13. Grochow, K., Martin, S. L., Hertzmann, A., and Popović, Z. 2004. Style-based inverse kinematics. In ACM Transactions on Graphics. 23(3):522–531. Google ScholarDigital Library
14. Grzeszczuk, R., Terzopoulos, D., and Hinton, G. 1998. Neuroanimator: Fast neural network emulation and control of physics-based models. In Proceedings of ACM SIGGRAPH 1998. 9–20. Google ScholarDigital Library
15. Kovar, L., and Gleicher, M. 2004. Automated extraction and parameterization of motions in large data sets. In ACM Transactions on Graphics. 23(3):559–568. Google ScholarDigital Library
16. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. In ACM Transactions on Graphics. 21(3):473–482. Google ScholarDigital Library
17. Lee, J., Chai, J., Reitsma, P., Hodgins, J., and Pollard, N. 2002. Interactive control of avatars animated with human motion data. In ACM Transactions on Graphics. 21(3):491–500. Google ScholarDigital Library
18. Li, Y., Wang, T., and Shum, H.-Y. 2002. Motion texture: A two-level statistical model for character synthesis. In ACM Transactions on Graphics. 21(3):465–472. Google ScholarDigital Library
19. Liu, C. K., and Popović, Z. 2002. Synthesis of complex dynamic character motion from simple animations. In ACM Transactions on Graphics. 21(3):408–416. Google ScholarDigital Library
20. Liu, K., Hertzmann, A., and Popović, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. In ACM Transactions on Graphics. 23(3):1071–1081. Google ScholarDigital Library
21. Ljung, L. 1999. System identification: Theory for the user. Prentice Hall PTR. 2nd Edition. Google ScholarDigital Library
22. Molina Tanco, L., and Hilton, A. 2000. Realistic synthesis of novel human movements from a database of motion capture examples. In Proceedings of the Workshop on Human Motion. 137–142. Google ScholarDigital Library
23. Mukai, T., and Kuriyama, S. 2005. Geostatistical motion interpolation. In ACM Transactions on Graphics. 24(3):1062–1070. Google ScholarDigital Library
24. Palm, W. J. 1999. Modeling, analysis, and control of dynamic systems. Wiley Publishers. 2nd Edition.Google Scholar
25. Pavlović, V., Rehg, J. M., and MacCormick, J. 2000. Learning switching linear models of human motion. In Advances in Neural Information Processing Systems 13, 981–987.Google Scholar
26. Popović, Z., and Witkin, A. P. 1999. Physically based motion transformation. In Proceedings of ACM SIGGRAPH 1999. 11–20. Google ScholarDigital Library
27. Rose, C., Cohen, M. F., and Bodenheimer, B. 1998. Verbs and adverbs: Multidimensional motion interpolation. In IEEE Computer Graphics and Applications. 18(5):32–40. Google ScholarDigital Library
28. Rose, C. F., Sloan, P.-P. J., and Cohen, M. F. 2001. Artist-directed inverse-kinematics using radial basis function interpolation. In Computer Graphics Forum. 20(3):239–250.Google ScholarCross Ref
29. Safonova, A., and Hodgins, J. K. 2007. Construction and optimal search of interpolated motion graphs. In ACM Transactions on Graphics. 26(3). Google ScholarDigital Library
30. Safonova, A., Hodgins, J., and Pollard, N. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. In ACM Transactions on Graphics. 23(3):514–521. Google ScholarDigital Library
31. Soatto, S., Doretto, G., and Wu, Y. N. 2001. Dynamic textures. In Proceedings of International Conference on Computer Vision (ICCV’01). 2:439–446.Google Scholar
32. Urtasun, R., Fleet, D. J., and Fua, P. 2006. Temporal motion models for monocular and multiview 3d human body tracking. In Computer Vision and Image Understanding (CVIU). 104(2):157–177. Google ScholarDigital Library
33. Vicon Systems, 2004. http://www.vicon.com.Google Scholar
34. Witkin, A., and Kass, M. 1988. Spacetime constraints. In Proceedings of ACM SIGGRAPH 1998. 159–168. Google ScholarDigital Library
35. Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. 2004. Spacetime faces: high resolution capture for modeling and animation. In ACM Transactions on Graphics. 23(3):548–558. Google ScholarDigital Library