“Computational interlocking furniture assembly”

  • ©Chi-Wing Fu, Peng Song, Xiaoqian Jiang, Lee Wei Yang, Ranga Jayaraman, and Daniel Cohen-Or



Session Title:

    Fabricating Fabulous Forms


    Computational interlocking furniture assembly




    Furniture typically consists of assemblies of elongated and planar parts that are connected together by glue, nails, hinges, screws, or other means that do not encourage disassembly and re-assembly. An alternative approach is to use an interlocking mechanism, where the component parts tightly interlock with one another. The challenge in designing such a network of interlocking joints is that local analysis is insufficient to guarantee global interlocking, and there is a huge number of joint combinations that require an enormous exploration effort to ensure global interlocking. In this paper, we present a computational solution to support the design of a network of interlocking joints that form a globally-interlocking furniture assembly. The key idea is to break the furniture complex into an overlapping set of small groups, where the parts in each group are immobilized by a local key, and adjacent groups are further locked with dependencies. The dependency among the groups saves the effort of exploring the immobilization of every subset of parts in the assembly, thus allowing the intensive interlocking computation to be localized within each small group. We demonstrate the effectiveness of our technique on many globally-interlocking furniture assemblies of various shapes and complexity.


    1. Cignoni, P., Pietroni, N., Malomo, L., and Scopigno, R. 2014. Field-aligned mesh joinery. ACM Trans. Graph. 33, 1. Article 11. Google ScholarDigital Library
    2. Cutler, W. H. 1978. The six-piece burr. Journal of Recreational Mathematics 10, 4, 241–250.Google Scholar
    3. Cutler, W. H., 1994. A computer analysis of all 6-piece burrs. Self published.Google Scholar
    4. de Goes, F., Alliez, P., Owhadi, H., and Desbrun, M. 2013. On the equilibrium of simplicial masonry structures. ACM Trans. Graph. (SIGGRAPH) 32, 4. Article 93. Google ScholarDigital Library
    5. Deuss, M., Panozzo, D., Whiting, E., Liu, Y., Block, P., Sorkine-Hornung, O., and Pauly, M. 2014. Assembling self-supporting structures. ACM Trans. Graph. (SIGGRAPH Asia) 33, 6. Article 214. Google ScholarDigital Library
    6. Graubner, W. 1992. Encyclo. of Wood Joints. Taunton Press.Google Scholar
    7. Gustafsson, S. I. 1995. Furniture design by use of the finite element method. Holz als Roh- und Werkstoff 53, 4, 257–260.Google Scholar
    8. Hao, J., Fang, L., and Williams, R. E. 2011. An efficient curvature-based partitioning of large-scale stl models. Rapid Prototyping Journal 17, 2, 116–127.Google ScholarCross Ref
    9. Hildebrand, K., Bickel, B., and Alexa, M. 2013. Orthogonal slicing for additive manufacturing. Computers & Graphics (SMI) 37, 6, 669–675. Google ScholarDigital Library
    10. Hu, R., Li, H., Zhang, H., and Cohen-Or, D. 2014. Approximate pyramidal shape decomposition. ACM Trans. Graph. (SIGGRAPH Asia) 33, 6. Article 213. Google ScholarDigital Library
    11. Jones, D., 2014. Interlocking chair. http://www.offi.com/products/offikids/PAS-CHAIR.php?p2c=679.Google Scholar
    12. Koo, B., Li, W., Yao, J., Agrawala, M., and Mitra, N. J. 2014. Creating works-like prototypes of mechanical objects. ACM Trans. Graph. (SIGGRAPH Asia) 33, 6. Article 217. Google ScholarDigital Library
    13. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3D furniture models to fabricatable parts and connectors. ACM Trans. Graph. (SIGGRAPH) 30, 4. Article 85. Google ScholarDigital Library
    14. Laurajaxs, 2014. Interlocking furniture. http://laurajaxs.hubpages.com/hub/interlocking-furniture.Google Scholar
    15. Li, W., Agrawala, M., Curless, B., and Salesin, D. 2008. Automated generation of interactive 3D exploded view diagrams. ACM Trans. Graph. (SIGGRAPH) 27, 3. Article 101. Google ScholarDigital Library
    16. Liu, Y., Hao, P., Snyder, J., Wang, W., and Guo, B. 2013. Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. (SIGGRAPH) 32, 4. Article 92. Google ScholarDigital Library
    17. Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. 2012. Chopper: Partitioning models into 3D-printable parts. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6. Article 129. Google ScholarDigital Library
    18. Medellín, H., Lim, T., Corney, J., Ritchie, J. M., and Davies, J. B. C. 2007. Automatic subdivision and refinement of large components for rapid prototyping production. Journal of Comp. and Info. Science in Eng. 7, 3, 249–258.Google ScholarCross Ref
    19. Panozzo, D., Block, P., and Sorkine-Hornung, O. 2013. Designing unreinforced masonry models. ACM Trans. Graph. (SIGGRAPH) 32, 4. Article 91. Google ScholarDigital Library
    20. Postell, J. 2012. Furniture Design. Wiley, 2nd edition.Google Scholar
    21. Röver, A., 2011. Burr tools. burrtools.sourceforge.net.Google Scholar
    22. Saul, G., Lau, M., Mitani, J., and Igarashi, T. 2011. SketchChair: An all-in-one chair design system for end users. In TEI, 73–80. Google ScholarDigital Library
    23. Schulz, A., Shamir, A., Levin, D. I. W., Sitthi-Amorn, P., and Matusik, W. 2014. Design and fabrication by example. ACM Trans. Graph. (SIGGRAPH) 33, 4. Article 62. Google ScholarDigital Library
    24. Schwartzburg, Y., and Pauly, M. 2013. Fabrication-aware design with intersecting planar pieces. Computer Graphics Forum (Eurographics) 32, 2, 317–326.Google ScholarCross Ref
    25. Smardzewski, J. 1998. Numerical analysis of furniture constructions. Wood Science and Technology 32, 4, 273–286.Google ScholarCross Ref
    26. Song, P., Fu, C.-W., and Cohen-Or, D. 2012. Recursive interlocking puzzles. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6. Article 128. Google ScholarDigital Library
    27. Song*, P., Fu*, C.-W., Goswami, P., Zheng, J., Mitra, N. J., and Cohen-Or, D. 2013. Reciprocal frame structures made easy. ACM Trans. Graph. (SIGGRAPH) 32, 4. Article 94. (* joint first authors). Google ScholarDigital Library
    28. Tang, C., Sun, X., Gomes, A., Wallner, J., and Pottmann, H. 2014. Form-finding with polyhedral meshes made simple. ACM Trans. Graph. (SIGGRAPH) 33, 4. Article 70. Google ScholarDigital Library
    29. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph. (SIGGRAPH) 31, 4. Article 86. Google ScholarDigital Library
    30. Vanek, J., Galicia, J. A. G., Benes, B., Měch, R., Carr, N., Stava, O., and Miller, G. S. 2014. PackMerger: A 3D print volume optimizer. Computer Graphics Forum 33, 6, 322–332.Google ScholarDigital Library
    31. Vouga, E., Höbinger, M., Wallner, J., and Pottmann, H. 2012. Design of self-supporting surfaces. ACM Trans. Graph. (SIGGRAPH) 31, 4, Article 87. Google ScholarDigital Library
    32. Xin, S.-Q., Lai, C.-F., Fu, C.-W., Wong, T.-T., He, Y., and Cohen-Or, D. 2011. Making burr puzzles from 3D models. ACM Trans. Graph. (SIGGRAPH) 30, 4. Article 97. Google ScholarDigital Library
    33. Zhou, Y., Sueda, S., Matusik, W., and Shamir, A. 2014. Boxelization: Folding 3D objects into boxes. ACM Trans. Graph. (SIGGRAPH) 33, 4. Article 71. Google ScholarDigital Library

ACM Digital Library Publication: