“Computational design of reconfigurables”
Conference:
Type(s):
Title:
- Computational design of reconfigurables
Session/Category Title: DEFORMABLE SURFACE DESIGN
Presenter(s)/Author(s):
Moderator(s):
Abstract:
A reconfigurable is an object or collection of objects whose transformation between various states defines its functionality or aesthetic appeal. For example, consider a mechanical assembly composed of interlocking pieces, a transforming folding bicycle, or a space-saving arrangement of apartment furniture. Unlike traditional computer-aided design of static objects, specialized tools are required to address problems unique to the computational design and revision of objects undergoing rigid transformations. Collisions and interpenetrations as objects transition from one configuration to another prevent the physical realization of a design. We present a software environment intended to support fluid interactive design of reconfigurables, featuring tools that identify, visualize, monitor and resolve infeasible configurations. We demonstrate the versatility of the environment on a number of examples spanning mechanical systems, urban dwelling, and interlocking puzzles, some of which we then realize via additive manufacturing.Spatial-temporal information about collisions between objects is presented to the designer according to a cascading order of precedence. A designer may quickly determine when, and then where, and then how objects are colliding. This precedence guides the design and implementation of our four-dimensional spacetime bounding volume hierarchy for interactive-rate collision detection. On screen, the designer experiences a suite of interactive visualization and monitoring tools during editing: timeline notifications of new collisions, picture-in-picture windows for tracking collisions and suggestive hints for contact resolution. Contacts too tedious to remove manually can be eliminated automatically via our proposed constrained numerical optimization and swept-volume carving.
References:
1. Allard, J., Faure, F., Courtecuisse, H., Falipou, F., Duriez, C., and Kry, P. G. 2010. Volume contact constraints at arbitrary resolution. ACM Trans. Graph. 29, 4 (July), 82:1–82:10. Google ScholarDigital Library
2. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. Google ScholarDigital Library
3. Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-it: Optimizing moment of inertia for spinnable objects. ACM Trans. Graph.. Google ScholarDigital Library
4. Bächer, M., Coros, S., and Thomaszewski, B. 2015. Linkedit: interactive linkage editing using symbolic kinematics. ACM Trans. Graph.. Google ScholarDigital Library
5. Baraff, D., Witkin, A., and Kass, M. 2003. Untangling cloth. ACM Trans. Graph. 22, 3, 862–870. Google ScholarDigital Library
6. Bernstein, G. L., and Wojtan, C. 2013. Putting holes in holey geometry: Topology change for arbitrary surfaces. ACM Trans. Graph.. Google ScholarDigital Library
7. Bharaj, G., Levin, D. I. W., Tompkin, J., Fei, Y., Pfister, H., Matusik, W., and Zheng, C. 2015. Computational design of metallophone contact sounds. ACM Trans. Graph.. Google ScholarDigital Library
8. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (July), 594–603. Google ScholarDigital Library
9. Cameron, S. 1990. Collision detection by four-dimensional intersection testing. IEEE T. Robotics and Automation.Google Scholar
10. Campen, M., and Kobbelt, L. 2010. Polygonal boundary evaluation of minkowski sums and swept volumes. Comput. Graph. Forum.Google Scholar
11. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph.. Google ScholarDigital Library
12. Erleben, K. 2004. Stable, Robust, and Versatile Multibody Dynamics Animation. PhD thesis, Univ. of Copenhagen.Google Scholar
13. Everitt, C. 2001. Interactive order-independent transparency. Tech. rep., nVidia Corp.Google Scholar
14. Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iWIRES: An analyze-and-edit approach to shape manipulation. ACM Trans. Graph.. Google ScholarDigital Library
15. Garg, A., Sageman-Furnas, A. O., Deng, B., Yue, Y., Grinspun, E., Pauly, M., and Wardetzky, M. 2014. Wire mesh design. ACM Trans. Graph.. Google ScholarDigital Library
16. Guibas, L. J. 1998. Kinetic data structures–a state of the art report. Proc. WAFR. Google ScholarDigital Library
17. Harmon, D., Panozzo, D., Sorkine, O., and Zorin, D. 2011. Interference-aware geometric modeling. ACM Trans. Graph.. Google ScholarDigital Library
18. Igarashi, Y., Igarashi, T., and Mitani, J. 2012. Beady: Interactive beadwork design and construction. ACM Trans. Graph.. Google ScholarDigital Library
19. Jacobson, A., Panozzo, D., et al., 2013. libigl: A simple C++ geometry processing library. http://igl.ethz.ch/projects/libigl/.Google Scholar
20. Joubert, N., Roberts, M., Truong, A., Berthouzoz, F., and Hanrahan, P. 2015. An interactive tool for designing quadrotor camera shots. ACM Trans. Graph.. Google ScholarDigital Library
21. Kavraki, L. E., Švestka, P., Latombe, J.-C., and Over-mars, M. H. 1996. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE TRA.Google Scholar
22. Klosowski, J. T., Held, M., Mitchell, J. S., Sowizral, H., and Zikan, K. 1998. Efficient collision detection using bounding volume hierarchies of k-dops. IEEE TVCG. Google ScholarDigital Library
23. Koo, B., Li, W., Yao, J., Agrawala, M., and Mitra, N. J. 2014. Creating works-like prototypes of mechanical objects. ACM Trans. Graph.. Google ScholarDigital Library
24. Li, H., Alhashim, I., Zhang, H., Shamir, A., and Cohen-Or, D. 2012. Stackabilization. ACM Trans. Graph.. Google ScholarDigital Library
25. Liu, S., Jacobson, A., and Gingold, Y. 2014. Skinning cubic Bézier splines and Catmull-Clark subdivision surfaces. ACM Trans. Graph.. Google ScholarDigital Library
26. Liu, T., Hertzmann, A., Li, W., and Funkhouser, T. 2015. Style compatibility for 3D furniture models. ACM Trans. Graph.. Google ScholarDigital Library
27. Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. 2011. Interactive furniture layout using interior design guidelines. ACM Trans. Graph.. Google ScholarDigital Library
28. Pavic, D., and Kobbelt, L. 2008. High-resolution volumetric computation of offset surfaces with feature preservation. Comput. Graph. Forum.Google Scholar
29. Peternell, M., Pottmann, H., Steiner, T., and Zhao, H. 2005. Swept volumes. Computer-Aided Design Appl..Google Scholar
30. Popović, J., Seitz, S. M., Erdmann, M., Popović, Z., and Witkin, A. 2000. Interactive manipulation of rigid body simulations. In Proc. SIGGRAPH. Google ScholarDigital Library
31. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press. Google ScholarDigital Library
32. Schroeder, W. J., Lorensen, W. E., and Linthicum, S. 1994. Implicit modeling of swept surfaces and volumes. In Proc. of the Conference on Visualization. Google ScholarDigital Library
33. Schüller, C., Panozzo, D., and Sorkine-Hornung, O. 2014. Appearance-mimicking surfaces. ACM Trans. Graph.. Google ScholarDigital Library
34. Schulz, A., Shamir, A., Levin, D. I. W., Sitthi-Amorn, P., and Matusik, W. 2014. Design and fabrication by example. ACM Trans. Graph.. Google ScholarDigital Library
35. Secord, A., Lu, J., Finkelstein, A., Singh, M., and Nealen, A. 2011. Perceptual models of viewpoint preference. ACM Trans. Graph.. Google ScholarDigital Library
36. Shao, M.-Z., and Badler, N. 1996. Spherical sampling by archimedes’ theorem. Tech. rep., Univ. of Penn.Google Scholar
37. Shoemake, K. 1992. Uniform random rotations. In Graphics Gems III. Morgan Kaufmann. Google ScholarDigital Library
38. Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational design of rubber balloons. Comput. Graph. Forum. Google ScholarDigital Library
39. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Trans. Graph.. Google ScholarDigital Library
40. Snibbe, S. S. 1995. A direct manipulation interface for 3d computer animation. Comput. Graph. Forum. Google ScholarDigital Library
41. Sun, T., and Zheng, C. 2015. Computational design of twisty joints and puzzles. ACM Trans. Graph.. Google ScholarDigital Library
42. Tang, M., Manocha, D., Yoon, S.-E., Du, P., Heo, J.-P., and Tong, R.-F. 2011. Volccd: Fast continuous collision culling between deforming volume meshes. ACM Trans. Graph. 30, 5 (Oct.), 111:1–111:15. Google ScholarDigital Library
43. Teschner, M., Kimmerle, S., Zachmann, G., Heidelberger, B., Raghupathi, L., Fuhrmann, A., Cani, M.-P., Faure, F., Magnenat-Thalmann, N., and Strasser, W. 2004. Collision detection for deformable objects. In Proc. Eurographics (STAR).Google Scholar
44. Thomaszewski, B., Coros, S., Gauge, D., Megaro, V., Grinspun, E., and Gross, M. 2014. Computational design of linkage-based characters. ACM Trans. Graph.. Google ScholarDigital Library
45. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment editing and modeling. ACM Trans. Graph.. Google ScholarDigital Library
46. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph.. Google ScholarDigital Library
47. Umetani, N., Koyama, Y., Schmidt, R., and Igarashi, T. 2014. Pteromys: Interactive design and optimization of free-formed free-flight model airplanes. ACM Trans. Graph.. Google ScholarDigital Library
48. Volino, P., and Magnenat-Thalmann, N. 2006. Resolving surface collisions through intersection contour minimization. ACM Trans. Graph.. Google ScholarDigital Library
49. Wang, B., Faure, F., and Pai, D. K. 2012. Adaptive image-based intersection volume. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarDigital Library
50. Weld, J. D., and Leu, M. C. 1990. Geometric representation of swept volumes with application to polyhedral objects. Int. J. Rob. Res.. Google ScholarDigital Library
51. Witkin, A., and Kass, M. 1988. Spacetime constraints. Proc. SIGGRAPH. Google ScholarDigital Library
52. Xin, S., Lai, C.-F., Fu, C.-W., Wong, T.-T., He, Y., and Cohen-Or, D. 2011. Making burr puzzles from 3d models. ACM Trans. Graph.. Google ScholarDigital Library
53. Yu, L.-F., Yeung, S. K., Tang, C.-K., Terzopoulos, D., Chan, T. F., and Osher, S. 2011. Make it home: automatic optimization of furniture arrangement. ACM Trans. Graph.. Google ScholarDigital Library
54. Zhou, Y., Sueda, S., Matusik, W., and Shamir, A. 2014. Boxelization: Folding 3d objects into boxes. ACM Trans. Graph.. Google ScholarDigital Library