“Computational bodybuilding: anatomically-based modeling of human bodies” by Saito, Zhou and Kavan
Conference:
Type(s):
Title:
- Computational bodybuilding: anatomically-based modeling of human bodies
Session/Category Title: Modeling, Controlling, and Suturing Humans
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We propose a method to create a wide range of human body shapes from a single input 3D anatomy template. Our approach is inspired by biological processes responsible for human body growth. In particular, we simulate growth of skeletal muscles and subcutaneous fat using physics-based models which combine growth and elasticity. Together with a tool to edit proportions of the bones, our method allows us to achieve a desired shape of the human body by directly controlling hypertrophy (or atrophy) of every muscle and enlargement of fat tissues. We achieve near-interactive run times by utilizing a special quasi-statics solver (Projective Dynamics) and by crafting a volumetric discretization which results in accurate deformations without an excessive number of degrees of freedom. Our system is intuitive to use and the resulting human body models are ready for simulation using existing physics-based animation methods, because we deform not only the surface, but also the entire volumetric model.
References:
1. Agur, A. M., Ng-Thow-Hing, V., Ball, K. A., Fiume, E., and McKee, N. H. 2003. Documentation and three-dimensional modelling of human soleus muscle architecture. Clinical Anatomy 16, 4, 285–293.Google ScholarCross Ref
2. Ali-Hamadi, D., Liu, T., Gilles, B., Kavan, L., Faure, F., Palombi, O., and Cani, M.-P. 2013. Anatomy transfer. ACM Trans. Graph. 32, 6, 188. Google ScholarDigital Library
3. Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22, 3, 587–594. Google ScholarDigital Library
4. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: shape completion and animation of people. ACM Trans. Graph. 24, 3, 408–416. Google ScholarDigital Library
5. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3, 16. Google ScholarDigital Library
6. Ben Amar, M., and Goriely, A. 2005. Growth and instability in elastic tissues. Journal of the Mechanics and Physics of Solids 53, 10, 2284–2319.Google ScholarCross Ref
7. Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26, 3, 339–347.Google ScholarCross Ref
8. Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M. 2014. Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. 33, 4, 154. Google ScholarDigital Library
9. Boyd, S., and Vandenberghe, L. 2009. Convex optimization. Cambridge university press. Google ScholarDigital Library
10. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 4, 38. Google ScholarDigital Library
11. Chen, Y., Liu, Z., and Zhang, Z. 2013. Tensor-based human body modeling. In Proc. CVPR, 105–112. Google ScholarDigital Library
12. Chen, X., Zheng, C., Xu, W., and Zhou, K. 2014. An asymptotic numerical method for inverse elastic shape design. ACM Trans. Graph. 33, 4, 95. Google ScholarDigital Library
13. Choi, H. F., and Blemker, S. S. 2013. Skeletal muscle fascicle arrangements can be reconstructed using a laplacian vector field simulation. PloS one 8, 10, e77576.Google ScholarCross Ref
14. D’Antona, G., Lanfranconi, F., Pellegrino, M. A., Brocca, L., Adami, R., Rossi, R., Moro, G., Miotti, D., Canepari, M., and Bottinelli, R. 2006. Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders. The Journal of physiology 570, 3, 611–627.Google ScholarCross Ref
15. Fan, Y., Litven, J., and Pai, D. K. 2014. Active volumetric musculoskeletal systems. ACM Trans. Graph. 33, 4, 152. Google ScholarDigital Library
16. Fung, Y.-c. 1990. Biomechanics: motion, flow, stress, and growth, vol. 990. Springer-Verlag New York.Google Scholar
17. Geijtenbeek, T., van de Panne, M., and van der Stappen, A. F. 2013. Flexible muscle-based locomotion for bipedal creatures. ACM Trans. Graph. 32, 6, 206. Google ScholarDigital Library
18. Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., and Seidel, H.-P. 2009. A statistical model of human pose and body shape. Comput. Graph. Forum 28, 2, 337–346.Google ScholarCross Ref
19. Jacobson, A., and Sorkine, O. 2011. Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30, 6, 165. Google ScholarDigital Library
20. Jacobson, A., Baran, I., Popovic, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4, 78. Google ScholarDigital Library
21. Jain, A., Thormählen, T., Seidel, H.-P., and Theobalt, C. 2010. Moviereshape: Tracking and reshaping of humans in videos. ACM Trans. Graph. 29, 6, 148. Google ScholarDigital Library
22. Jones, G. W., and Chapman, S. J. 2012. Modeling growth in biological materials. SIAM Review 54, 1, 52–118. Google ScholarDigital Library
23. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3, 71. Google ScholarDigital Library
24. Kavan, L., and Zara, J. 2005. Spherical blend skinning: A real-time deformation of articulated models. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 9–16. Google ScholarDigital Library
25. Kraevoy, V., Sheffer, A., Shamir, A., and Cohen-Or, D. 2008. Non-homogeneous resizing of complex models. ACM Trans. Graph. 27, 5, 111. Google ScholarDigital Library
26. Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4, 99. Google ScholarDigital Library
27. Lee, D., Glueck, M., Khan, A., Fiume, E., and Jackson, K. 2010. A survey of modeling and simulation of skeletal muscle. ACM Trans. Graph. 28, 4.Google Scholar
28. Lee, Y., Park, M. S., Kwon, T., and Lee, J. 2014. Locomotion control for many-muscle humanoids. ACM Trans. Graph. 33, 6, 218. Google ScholarDigital Library
29. Levin, D. I., Gilles, B., Mädler, B., and Pai, D. K. 2011. Extracting skeletal muscle fiber fields from noisy diffusion tensor data. Medical Image Analysis 15, 3, 340–353.Google ScholarCross Ref
30. Loper, M., Mahmood, N., and Black, M. J. 2014. Mosh: motion and shape capture from sparse markers. ACM Trans. Graph. 33, 6, 220. Google ScholarDigital Library
31. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Trans. Graph. 30, 4, 72. Google ScholarDigital Library
32. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 4, 37. Google ScholarDigital Library
33. Neumann, T., Varanasi, K., Hasler, N., Wacker, M., Magnor, M., and Theobalt, C. 2013. Capture and statistical modeling of arm-muscle deformations. Comput. Graph. Forum 32, 2pt3, 285–294.Google Scholar
34. Neumann, T., Varanasi, K., Wenger, S., Wacker, M., Magnor, M., and Theobalt, C. 2013. Sparse localized deformation components. ACM Trans. Graph. 32, 6, 179. Google ScholarDigital Library
35. Pai, D. K., Levin, D. I. W., and Fan, Y. 2014. Eulerian solids for soft tissue and more. In ACM SIGGRAPH 2014 Courses, 22:1–22:151. Google ScholarDigital Library
36. Patterson, T., Mitchell, N., and Sifakis, E. 2012. Simulation of complex nonlinear elastic bodies using lattice deformers. ACM Trans. Graph. 31, 6, 197. Google ScholarDigital Library
37. Popa, T., Julius, D., and Sheffer, A. 2006. Material-aware mesh deformations. In Proc. of Shape Modeling International, 22–22. Google ScholarDigital Library
38. Reinert, B., Ritschel, T., and Seidel, H.-P. 2012. Homunculus warping: Conveying importance using self-intersection-free non-homogeneous mesh deformation. Comput. Graph. Forum 31, 7, 2165–2171. Google ScholarDigital Library
39. Rodriguez, E. K., Hoger, A., and McCulloch, A. D. 1994. Stress-dependent finite growth in soft elastic tissues. Journal of biomechanics 27, 4, 455–467.Google ScholarCross Ref
40. Scheepers, F., Parent, R. E., Carlson, W. E., and May, S. F. 1997. Anatomy-based modeling of the human musculature. In Proc. SIGGRAPH, 163–172. Google ScholarDigital Library
41. Schüller, C., Kavan, L., Panozzo, D., and Sorkine-Hornung, O. 2013. Locally injective mappings. Comput. Graph. Forum 32, 5, 125–135. Google ScholarDigital Library
42. Seo, H., and Magnenat-Thalmann, N. 2003. An automatic modeling of human bodies from sizing parameters. In Proc. I3D, 19–26. Google ScholarDigital Library
43. Shoemake, K., and Duff, T. 1992. Matrix animation and polar decomposition. In Proc. Graphics interface, vol. 92, 258–264. Google ScholarDigital Library
44. Si, W., Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2015. Realistic biomechanical simulation and control of human swimming. ACM Trans. Graph. 34, 1, 10. Google ScholarDigital Library
45. Si, H. 2011. A quality tetrahedral mesh generator and three-dimensional delaunay triangulator.Google Scholar
46. Sifakis, E., and Barbic, J. 2012. FEM simulation of 3D deformable solids: a practitioner’s guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses, 20. Google ScholarDigital Library
47. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24, 3, 417–425. Google ScholarDigital Library
48. Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational design of rubber balloons. Comput. Graph. Forum 31, 24. Google ScholarDigital Library
49. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proc. SGP, 175–184. Google ScholarDigital Library
50. Taber, L. A. 1995. Biomechanics of growth, remodeling, and morphogenesis. Applied mechanics reviews 48, 8, 487–545.Google Scholar
51. Taber, L. A. 1998. Biomechanical growth laws for muscle tissue. Journal of theoretical biology 193, 2, 201–213.Google ScholarCross Ref
52. Teran, J., Blemker, S., Hing, V., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In Proc. SCA, 68–74. Google ScholarDigital Library
53. Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. IEEE Trans. Vis. Comput. Graphi. 11, 3, 317–328. Google ScholarDigital Library
54. Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust quasistatic finite elements and flesh simulation. In Proc. SCA, 181–190. Google ScholarDigital Library
55. Thompson, D. W. 1942. On growth and form.Google Scholar
56. Wilhelms, J., and Van Gelder, A. 1997. Anatomically based modeling. In Proc. SIGGRAPH, 173–180. Google ScholarDigital Library
57. Wisdom, K., Delp, S., and Kuhl, E. 2015. Use it or lose it: multiscale skeletal muscle adaptation to mechanical stimuli. Biomechanics and Modeling in Mechanobiology 14, 2, 195–215.Google ScholarCross Ref
58. Wolfram-Gabel, R., Beaujeux, R., Fabre, M., Kehrli, P., Dietemann, J., and Bourjat, P. 1996. Histologic characteristics of posterior lumbar epidural fatty tissue. Journal of neuroradiology 23, 1, 19–25.Google Scholar
59. Zhou, S., Fu, H., Liu, L., Cohen-Or, D., and Han, X. 2010. Parametric reshaping of human bodies in images. ACM Trans. Graph. 29, 4, 126. Google ScholarDigital Library