“Close-to-conformal deformations of volumes”

  • ©Albert Chern, Ulrich Pinkall, and Peter Schröder

Conference:


Type(s):


Title:

    Close-to-conformal deformations of volumes

Session/Category Title:   Simsquishal Geometry


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Conformal deformations are infinitesimal scale-rotations, which can be parameterized by quaternions. The condition that such a quaternion field gives rise to a conformal deformation is nonlinear and in any case only admits Möbius transformations as solutions. We propose a particular decoupling of scaling and rotation which allows us to find near to conformal deformations as minimizers of a quadratic, convex Dirichlet energy. Applied to tetrahedral meshes we find deformations with low quasiconformal distortion as the principal eigenvector of a (quaternionic) Laplace matrix. The resulting algorithms can be implemented with highly optimized standard linear algebra libraries and yield deformations comparable in quality to far more expensive approaches.

References:


    1. Aigerman, N., and Lipman, Y. 2013. Injective and Bounded Distortion Mappings in 3D. ACM Trans. Graph. 32, 4, 106:1–14. Google ScholarDigital Library
    2. Ben-Chen, M., Weber, O., and Gotsman, C. 2009. Variational Harmonic Maps for Space Deformations. ACM Trans. Graph. 28, 3, 34:1–11. Google ScholarDigital Library
    3. Cayley, A. 1845. On Certain Results Relating to Quaternions. Phil. Mag. 26, 141–145.Google Scholar
    4. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A Simple Geometric Model for Elastic Deformations. ACM Trans. Graph. 29, 4, 38:1–6. Google ScholarDigital Library
    5. Chen, R., Weber, O., Keren, D., and Ben-Chen, M. 2013. Planar Shape Interpolation with Bounded Distortion. ACM Trans. Graph. 32, 4, 108:1–11. Google ScholarDigital Library
    6. Ciarlet, P. G. 2013. Linear and Nonlinear Functional Analysis with Applications. SIAM. Google ScholarDigital Library
    7. Crane, K., Pinkall, U., and Schröder, P. 2011. Spin Transformations of Discrete Surfaces. ACM Trans. Graph. 30, 4, 104:1–10. Google ScholarDigital Library
    8. Crane, K., Pinkall, U., and Schröder, P. 2013. Robust Fairing via Conformal Curvature Flow. ACM Trans. Graph. 32, 4, 61:1–10. Google ScholarDigital Library
    9. Green, G. 1828. An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism. T. Wheelhouse.Google Scholar
    10. Henrot, A. 2006. Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser, 113–115.Google Scholar
    11. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic Coordinates for Character Animation. ACM Trans. Graph. 26, 3, 71:1–9. Google ScholarDigital Library
    12. Kazhdan, M., Solomon, J., and Ben-Chen, M. 2012. Can Mean-Curvature Flow Be Made Non-Singular? Comp. Graph. Forum 31, 5, 1745–1754. Google ScholarDigital Library
    13. Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. 2013. Globally Optimal Direction Fields. ACM Trans. Graph. 32, 4, 59:1–10. Google ScholarDigital Library
    14. Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. 2015. Stripe Patterns on Surfaces. ACM Trans. Graph. 34, 4, 39:1–11. Google ScholarDigital Library
    15. Kovalsky, S. Z., Aigerman, N., Basri, R., and Lipman, Y. 2014. Controlling Singular Values with Semidefinite Programming. ACM Trans. Graph. 33, 4, 68:1–13. Google ScholarDigital Library
    16. Kuznetsov, N., Kulczycki, T., Kwaśnicki, M., Nazarov, A., Poborchi, S., Polterovich, I., and Siudeja, B. 2014. The Legacy of Vladimir Andreevich Steklov. Notices AMS 61, 1.Google Scholar
    17. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least Squares Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21, 3, 362–371. Google ScholarDigital Library
    18. Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green Coordinates. ACM Trans. Graph. 27, 78:1–10. Google ScholarDigital Library
    19. Monge, G., and Liouville, M. 1850. Application de L’Analyse a la Géométrie. Bachelier, Paris, Ch. Note VI, 609–616.Google Scholar
    20. Paillé, G.-P., and Poulin, P. 2012. As-Conformal-As-Possible Discrete Volumetric Mapping. Comp. & Graph. 36, 5, 427–433. Google ScholarDigital Library
    21. Paillé, G.-P., Poulin, P., and Lévy, B. 2013. Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization. Comp. Graph. Forum 32, 5, 103–112. Google ScholarDigital Library
    22. Sander, P. V., Snyder, J., Gortler, S. J., and Hoppe, H. 2001. Texture Mapping Progressive Meshes. Proc. ACM/SIGGRAPH Conf., 409–416. Google ScholarDigital Library
    23. Stekloff, W. 1902. Sur les Problémes Fondamentaux de la Physique Mathematique. Annal. Sci. ENS 3, 19, 191–259 and 455–490.Google Scholar
    24. Strauss, W. A. 2008. Partial Differential Equations, 2nd Ed. Wiley.Google Scholar
    25. Tat, L. Y., Chun, L. K., and Ming, L. L. 2014. Large Deformation Registration via n-Dimensional Quasi-Conformal Maps. Under review.Google Scholar
    26. Wang, Y., Gu, X., and Yau, S.-T. 2003. Volumetric Harmonic Map. Commun. Inf. Syst. 3, 3, 192–202.Google Scholar
    27. Weber, O., and Gotsman, C. 2010. Controllable Conformal Maps for Shape Deformation and Interpolation. ACM Trans. Graph. 29, 4, 78:1–11. Google ScholarDigital Library
    28. Weber, O., Ben-Chen, M., Gotsman, C., and Hormann, K. 2011. A Complex View of Barycentric Mappings. Comp. Graph. Forum 30, 5, 1533–1542.Google ScholarCross Ref
    29. Weissmann, S., Pinkall, U., and Schröder, P. 2014. Smoke Rings from Smoke. ACM Trans. Graph. 33, 4, 140:1–8. Google ScholarDigital Library
    30. Yamabe, H. 1960. On a Deformation of Riemannian Structures on Compact Manifolds. Osaka Math. J. 12, 1, 21–37.Google Scholar


ACM Digital Library Publication:



Overview Page: