“Charted metropolis light transport” by Pantaleoni

  • ©Jacopo Pantaleoni




    Charted metropolis light transport

Session/Category Title: Rendering in Path Space




    In this manuscript, inspired by a simpler reformulation of primary sample space Metropolis light transport, we derive a novel family of general Markov chain Monte Carlo algorithms called charted Metropolis-Hastings, that introduces the notion of sampling charts to extend a given sampling domain and make it easier to sample the desired target distribution and escape from local maxima through coordinate changes. We further apply the novel algorithms to light transport simulation, obtaining a new type of algorithm called charted Metropolis light transport, that can be seen as a bridge between primary sample space and path space Metropolis light transport. The new algorithms require to provide only right inverses of the sampling functions, a property that we believe crucial to make them practical in the context of light transport simulation.


    1. Benedikt Bitterli. 2016. Rendering resources. (2016). https://benedikt-bitterli.me/resources/.Google Scholar
    2. David Cline, Justin Talbot, and Parris Egbert. 2005. Energy Redistribution Path Tracing. In ACM SIGGRAPH 2005 Papers (SIGGRAPH ’05). ACM, New York, NY, USA, 1186–1195. Google ScholarDigital Library
    3. Charles J. Geyer. 2011. Introduction to Markov Chain Monte Carlo. In Handbook of Markov Chain Monte Carlo. Chapman and Hall CRC, Chapter 1, 3–47. Google ScholarCross Ref
    4. Toshiya Hachisuka and Henrik Wann Jensen. 2011. Robust Adaptive Photon Tracing Using Photon Path Visibility. ACM Trans. Graph. 30, 5, Article 114 (Oct. 2011), 11 pages. Google ScholarDigital Library
    5. Toshiya Hachisuka, Anton S. Kaplanyan, and Carsten Dachsbacher. 2014. Multiplexed Metropolis Light Transport. ACM Trans. Graph. 33, 4, Article 100 (July 2014), 10 pages. Google ScholarDigital Library
    6. Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A Path Space Extension for Robust Light Transport Simulation. ACM Trans. Graph. 31, 6, Article 191 (Nov. 2012), 10 pages. Google ScholarDigital Library
    7. Johannes Hanika, Anton Kaplanyan, and Carsten Dachsbacher. 2015. Improved Half Vector Space Light Transport. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering) 34, 4 (June 2015), 65–74. Google ScholarDigital Library
    8. Eric Heitz and Eugene D’Eon. 2014. Importance Sampling Microfacet-Based BSDFs using the Distribution of Visible Normals. Computer Graphics Forum 33, 4 (July 2014), 103–112. Google ScholarDigital Library
    9. Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. The Natural-Constraint Representation of the Path Space for Efficient Light Transport Simulation. ACM Transactions on Graphics (Proc. SIGGRAPH) 33, 4 (2014).Google Scholar
    10. Csaba Kelemen, Laszlo Szirmay-Kalos, Gyorgy Antal, and Ferenc Csonka. 2002. A Simple and Robust Mutation Strategy for the Metropolis Light Transport Algorithm. In Computer Graphics Forum. 531–540.Google Scholar
    11. Samuli Laine, Tero Karras, and Timo Aila. 2013. Megakernels Considered Harmful: Wavefront Path Tracing on GPUs. In Proceedings of the 5th High-Performance Graphics Conference (HPG ’13). ACM, New York, NY, USA, 137–143. Google ScholarDigital Library
    12. Enzo Marinari and Giorgio Parisi. 1992. Simulated Tempering: A New Monte Carlo Scheme. Europhysics Letters 19 (1992), 451–458. Google ScholarCross Ref
    13. Hisanari Otsu, Anton Kaplanyan, Johannes Hanika, Carsten Dachsbacher, and Toshiya Hachisuka. 2017. Fusing State Spaces for Markov Chain Monte Carlo Rendering (SIGGRAPH ’17). ACM.Google Scholar
    14. Jacopo Pantaleoni. 2016. Charted Metropolis Light Transport. arXiv:1612.05395 (Dec. 2016). https://arxiv.org/abs/1612.05395Google Scholar
    15. Luke Tierney. 1994. Markov chains for exploring posterior distributions. Annals of Statistics 22 (1994), 1701–1762. Google ScholarCross Ref
    16. Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford University.Google Scholar
    17. Eric Veach and Leonidas J. Guibas. 1997. Metropolis Light Transport. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 65–76. Google ScholarDigital Library
    18. A. Wilkie, S. Nawaz, M. Droske, A. Weidlich, and J. Hanika. 2014. Hero Wavelength Spectral Sampling. In Proceedings of the 25th Eurographics Symposium on Rendering (EGSR ’14). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 123–131. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: