“Cascaded displays: spatiotemporal superresolution using offset pixel layers” by Heide, Lanman, Reddy, Kautz, Pulli, et al. …

  • ©Felix Heide, Douglas Lanman, Dikpal Reddy, Jan Kautz, Kari Pulli, and David P. Luebke

Conference:


Type:


Title:

    Cascaded displays: spatiotemporal superresolution using offset pixel layers

Session/Category Title: Displays


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We demonstrate that layered spatial light modulators (SLMs), subject to fixed lateral displacements and refreshed at staggered intervals, can synthesize images with greater spatiotemporal resolution than that afforded by any single SLM used in their construction. Dubbed cascaded displays, such architectures enable superresolution flat panel displays (e.g., using thin stacks of liquid crystal displays (LCDs)) and digital projectors (e.g., relaying the image of one SLM onto another). We introduce a comprehensive optimization framework, leveraging non-negative matrix and tensor factorization, that decomposes target images and videos into multi-layered, time-multiplexed attenuation patterns—offering a flexible trade-off between apparent image brightness, spatial resolution, and refresh rate. Through this analysis, we develop a real-time dual-layer factorization method that quadruples spatial resolution and doubles refresh rate. Compared to prior superresolution displays, cascaded displays place fewer restrictions on the hardware, offering thin designs without moving parts or the necessity of temporal multiplexing. Furthermore, cascaded displays are the first use of multi-layer displays to increase apparent temporal resolution. We validate these concepts using two custom-built prototypes: a dual-layer LCD and a dual-modulation liquid crystal on silicon (LCoS) projector, with the former emphasizing head-mounted display (HMD) applications.

References:


    1. Aliaga, D. G., Yeung, Y. H., Law, A., Sajadi, B., and Majumder, A. 2012. Fast high-resolution appearance editing using superimposed projections. ACM Trans. Graph. 31, 2. Google ScholarDigital Library
    2. Allen, W., and Ulichney, R. 2005. Wobulation: Doubling the addressed resolution of projection displays. SID Symposium Digest of Technical Papers 36, 1, 1514–1517.Google ScholarCross Ref
    3. Baker, S., and Kanade, T. 2002. Limits on super-resolution and how to break them. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 9, 1167–1183. Google ScholarDigital Library
    4. Bell, G. P., Craig, R., Paxton, R., Wong, G., and Galbraith, D. 2008. Beyond flat panels: Multi layer displays with real depth. SID Digest 39, 1, 352–355.Google ScholarCross Ref
    5. Ben-Ezra, M., Zomet, A., and Nayar, S. K. 2004. Jitter camera: High resolution video from a low resolution detector. In IEEE Computer Vision and Pattern Recognition (CVPR), 135–142. Google ScholarDigital Library
    6. Berthouzoz, F., and Fattal, R. 2012. Apparent resolution enhancement for motion videos. In ACM Applied Perception. Google ScholarDigital Library
    7. Berthouzoz, F., and Fattal, R. 2012. Resolution enhancement by vibrating displays. ACM Trans. Graph. 31, 2, 15:1–15:14. Google ScholarDigital Library
    8. Blondel, V., Ho, N.-D., and van Dooren, P. 2008. Weighted nonnegative matrix factorization and face feature extraction. In Image and Vision Computing, 1–17.Google Scholar
    9. Damera-Venkata, N., and Chang, N. L. 2009. Display supersampling. ACM Trans. Graph. 28, 1, 9:1–9:19. Google ScholarDigital Library
    10. Didyk, P., Eisemann, E., Ritschel, T., Myszkowski, K., and Seidel, H.-P. 2010. Apparent display resolution enhancement for moving images. ACM Trans. Graph. 29, 4, 113:1–113:8. Google ScholarDigital Library
    11. Gotoda, H. 2010. A multilayer liquid crystal display for autostereoscopic 3D viewing. In SPIE Stereoscopic Displays and Applications XXI, vol. 7524, 1–8.Google Scholar
    12. Gotoda, H. 2011. Reduction of image blurring in an autostereoscopic multilayer liquid crystal display. In SPIE Stereoscopic Displays and Applications XXII, vol. 7863, 1–7.Google Scholar
    13. Hart, W. M. 1987. The temporal responsiveness of vision. In Adler’s Physiology of the Eye, R. A. Moses and W. M. Hart, Eds. C. V. Moseby Company.Google Scholar
    14. Heide, F., Wetzstein, G., Raskar, R., and Heidrich, W. 2013. Adaptive image synthesis for compressive displays. ACM Trans. Graph. 32, 4, 132:1–132:12. Google ScholarDigital Library
    15. Heide, F., Gregson, J., Wetzstein, G., Raskar, R., and Heidrich, W. 2014. A compressive multi-mode superresolution display. Technical Report arXiv:1404.5916.Google Scholar
    16. Ho, N.-D. 2008. Nonnegative Matrix Factorization Algorithms and Applications. PhD thesis, Université catholique de Louvain.Google Scholar
    17. Ives, F. E., 1903. Parallax stereogram and process of making same. U.S. Patent 725,567.Google Scholar
    18. Jaynes, C., and Ramakrishnan, D. 2003. Super-resolution composition in multi-projector displays. In IEEE Projector-Camera Systems (PROCAMS).Google Scholar
    19. Kusakabe, Y., Kanazawa, M., Nojiri, Y., Furuya, M., and Yoshimura, M. 2008. A YC-separation-type projector: High dynamic range with double modulation. Journal of the Society for Information Display 16, 2, 383–391.Google ScholarCross Ref
    20. Kusakabe, Y., Kanazawa, M., Nojiri, Y., Furuya, M., and Yoshimura, M. 2009. A high-dynamic-range and high-resolution projector with dual modulation. Proc. SPIE 7241.Google Scholar
    21. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: Optimizing dual-layer 3D displays using low-rank light field factorization. ACM Trans. Graph. 29, 6, 163:1–163:10. Google ScholarDigital Library
    22. Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: Dynamic light field display using multi-layer LCDs. ACM Trans. Graph. 30, 6, 186:1–186:10. Google ScholarDigital Library
    23. Lippmann, G. 1908. Épreuves réversibles donnant la sensation du relief. Journal of Physics 7, 4, 821–825.Google Scholar
    24. Majumder, A. 2005. Is spatial super-resolution feasible using overlapping projectors? In IEEE Acoustics, Speech, and Signal Processing (ICASSP), vol. 4.Google Scholar
    25. Olson, J., Krum, D., Suma, E., and Bolas, M. 2011. A design for a smartphone-based head mounted display. In IEEE Virtual Reality, 233–234. Google ScholarDigital Library
    26. Pavlovych, A., and Stuerzlinger, W. 2005. A high-dynamic range projection system. Proc. SPIE 5969.Google Scholar
    27. Sajadi, B., Gopi, M., and Majumder, A. 2012. Edge-guided resolution enhancement in projectors via optical pixel sharing. ACM Trans. Graph. 31, 4, 79:1–79:122. Google ScholarDigital Library
    28. Sajadi, B., Qoc-Lai, D., Ihler, A., Gopi, M., and Majumder, A. 2013. Image enhancement in projectors via optical pixel shift and overlay. In IEEE International Conference on Computational Photography (ICCP), 1–10.Google Scholar
    29. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High dynamic range display systems. ACM Trans. Graph. 23, 3, 760–768. Google ScholarDigital Library
    30. Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. 2004. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13, 4, 600–612. Google ScholarDigital Library
    31. Watson, B. A., and Hodges, L. F. 1995. Using texture maps to correct for optical distortion in head-mounted displays. In IEEE Virtual Reality Annual International Symposium, 172–178. Google ScholarDigital Library
    32. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. 30, 4, 95:1–95:12. Google ScholarDigital Library
    33. Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. 31, 4, 80:1–80:11. Google ScholarDigital Library
    34. Woo, S., Kim, D.-H., Han, Y. S., and Choi, B.-D. 2011. Full-color LCD microdisplay system based on OLED backlight unit and field-sequential color driving method. Journal of Photoenergy.Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page: