“Bubbles alive” by Hong, Lee, Yoon and Kim

  • ©Jeong-Mo Hong, Ho-Young Lee, Jong-Chul Yoon, and Chang-Hun Kim

Conference:


Type:


Title:

    Bubbles alive

Presenter(s)/Author(s):



Abstract:


    We propose a hybrid method for simulating multiphase fluids such as bubbly water. The appearance of subgrid visual details is improved by incorporating a new bubble model based on smoothed particle hydrodynamics (SPH) into an Eulerian grid-based simulation that handles background flows of large bodies of water and air. To overcome the difficulty in simulating small bubbles in the context of the multiphase flows on a coarse grid, we heuristically model the interphase properties of water and air by means of the interactions between bubble particles. As a result, we can animate lively motion of bubbly water with small scale details efficiently.

References:


    1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 26, 3, 481–487. Google ScholarDigital Library
    2. Becker, M., and Teschner, M. 2007. Weakly compressible SPH for free surface flows. In Proc. of the 2007 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 1–8. Google ScholarDigital Library
    3. Cleary, P. W., Pyo, S. H., Prakash, M., and Koo, B. K. 2007. Bubbling and frothing liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 26, 3, 971–976. Google ScholarDigital Library
    4. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83–116. Google ScholarDigital Library
    5. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736–744. Google ScholarDigital Library
    6. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15–22. Google ScholarDigital Library
    7. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proc. of ACM SIGGRAPH 2001, 23–30. Google ScholarDigital Library
    8. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models and Image Processing 58, 471–483. Google ScholarDigital Library
    9. Greenwood, S. T., and House, D. H. 2004. Better with bubbles: enhancing the visual realism of simulated fluid. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 287–296. Google ScholarDigital Library
    10. Hong, J.-M., and Kim, C.-H. 2003. Animation of bubbles in liquid. Comput. Graph. Forum (Eurographics Proc.) 22, 3, 253–262.Google ScholarCross Ref
    11. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 915–920. Google ScholarDigital Library
    12. Hong, J.-M., Shinar, T., and Fedkiw, R. 2007. Wrinkled flames and cellular patterns. ACM Trans. Graph. (SIGGRAPH Proc.) 26, 3, 471–476. Google ScholarDigital Library
    13. Hu, X., and Adams, N. 2006. A multi-phase SPH method for macroscopic and mesoscopic flows. J. Comput. Phys. 213, 2, 844–861. Google ScholarDigital Library
    14. Kim, J., Cha, D., Chang, B., Koo, B., and Ihm, I. 2006. Practical animation of turbulent splashing water. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 335–344. Google ScholarDigital Library
    15. Kim, B., Liu, Y., Llamas, I., and Rossignac, J. 2007. Advections with significantly reduced dissipation and diffusion. IEEE Trans. on Vis. and Comput. Graph. 13, 135–144. Google ScholarDigital Library
    16. Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. (SIGGRAPH Proc.) 26, 3, 481–487. Google ScholarDigital Library
    17. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457–462. Google ScholarDigital Library
    18. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3, 812–819. Google ScholarDigital Library
    19. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. on Vis. and Comput. Graph. (In Press). Google ScholarDigital Library
    20. Magnaudet, J., and Eames, I. 2000. The motion of high-reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659–708.Google ScholarCross Ref
    21. Mendelson, H. D. 1967. The prediction of bubble terminal velocities from wave theory. A. I. Ch. E. Journal 13, 2, 250–253.Google Scholar
    22. Mihalef, V., Unlusu, B., Metaxas, D., Sussman, M., and Hussaini, M. Y. 2006. Physics based boiling simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 317–324. Google ScholarDigital Library
    23. Müller, M., Charypar, D., and Gross, M. 2003. Particlebased fluid simulation for interactive applications. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 154–159. Google ScholarDigital Library
    24. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-based fluid-fluid interaction. In Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 237–244. Google ScholarDigital Library
    25. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. 2003. Particle-based simulation of fluids. In Comp. Graph. Forum (Eurographics Proc.), vol. 22, 401–410.Google ScholarCross Ref
    26. Shew, W. L., and Pinton, J.-F. 2006. Dynamical model of bubble path instability. Phys. Rev. Lett. 97, 144508.Google ScholarCross Ref
    27. Song, O., Shin, H., and Ko, H.-S. 2005. Stable but non-dissipative water. ACM Trans. Graph. 24, 1, 81–97. Google ScholarDigital Library
    28. Thuerey, N., Sadlo, F., Schirm, S., Muller-Fischer, M., and Gross, M. 2007. Real-time simulations of bubbles and foam within a shallow water framework. In Proc. of the 2007 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 191–198. Google ScholarDigital Library
    29. Thuerey, N. 2007. Physically based Animation of Free Surface Flows with the Lattice Boltzmann Method. PhD thesis, University of Erlangen-Nuremberg.Google Scholar


ACM Digital Library Publication: