“Bilateral texture filtering” by Cho, Lee, Kang and Lee

  • ©Hojin Cho, Hyunjoon Lee, Henry Kang, and Seungyong Lee



Session Title:

    Image Tricks


    Bilateral texture filtering




    This paper presents a novel structure-preserving image decomposition operator called bilateral texture filter. As a simple modification of the original bilateral filter [Tomasi and Manduchi 1998], it performs local patch-based analysis of texture features and incorporates its results into the range filter kernel. The central idea to ensure proper texture/structure separation is based on patch shift that captures the texture information from the most representative texture patch clear of prominent structure edges. Our method outperforms the original bilateral filter in removing texture while preserving main image structures, at the cost of some added computation. It inherits well-known advantages of the bilateral filter, such as simplicity, local nature, ease of implementation, scalability, and adaptability to other application scenarios.


    1. Aujol, J.-F., Gilboa, G., Chan, T., and Osher, S. 2006. Structure-texture image decomposition–modeling, algorithms, and parameter selection. International Journal of Computer Vision 67, 1, 111–136. Google ScholarDigital Library
    2. Bae, S., Paris, S., and Durand, F. 2006. Two-scale tone management for photographic look. ACM Trans. Graphics 25, 3, 637–645. Google ScholarDigital Library
    3. Buades, A., Le, T. M., Morel, J.-M., and Vese, L. A. 2010. Fast cartoon + texture image filters. IEEE Trans. Image Processing 19, 8, 1978–1986. Google ScholarDigital Library
    4. Chen, J., Paris, S., and Durand, F. 2007. Real-time edge-aware image processing with the bilateral grid. ACM Trans. Graphics 26, 3, 103:1–103:9. Google ScholarDigital Library
    5. Durand, F., and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graphics 21, 3, 257–266. Google ScholarDigital Library
    6. Eisemann, E., and Durand, F. 2004. Flash photography enhancement via intrinsic relighting. ACM Trans. Graphics 23, 673–678. Google ScholarDigital Library
    7. Farbman, Z., Fattal, R., Lischinski, D., and Szeliski, R. 2008. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graphics 27, 3, 67:1–67:10. Google ScholarDigital Library
    8. Fattal, R., Agrawala, M., and Rusinkiewicz, S. 2007. Multiscale shape and detail enhancement from multi-light image collections. ACM Trans. Graphics 26, 3, 51:1–51:9. Google ScholarDigital Library
    9. Fattal, R. 2009. Edge-avoiding wavelets and their applications. ACM Trans. Graphics 28, 3, 22:1–22:10. Google ScholarDigital Library
    10. Fleishman, S., Drori, I., and Cohen-Or, D. 2003. Bilateral mesh denoising. ACM Trans. Graphics 22, 3, 950–953. Google ScholarDigital Library
    11. Gastal, E. S. L., and Oliveira, M. M. 2011. Domain transform for edge-aware image and video processing. ACM Trans. Graphics 30, 4, 69:1–69:12. Google ScholarDigital Library
    12. Hays, J., Leordeanu, M., Efros, A. A., and Liu, Y. 2006. Discovering texture regularity as a higher-order correspondence problem. In Proc. ECCV 2006, 522–535. Google ScholarDigital Library
    13. Jones, T. R., Durand, F., and Desbrun, M. 2003. Noniterative, feature-preserving mesh smoothing. ACM Trans. Graphics 22, 3, 943–949. Google ScholarDigital Library
    14. Kang, H., Lee, S., and Chui, C. 2009. Flow-based image abstraction. IEEE Trans. Visualization and Computer Graphics 15, 62–76. Google ScholarDigital Library
    15. Karacan, L., Erdem, E., and Erdem, A. 2013. Structure-preserving image smoothing via region covariances. ACM Trans. Graphics 32, 6, 176:1–176:11. Google ScholarDigital Library
    16. Kass, M., and Solomon, J. 2010. Smoothed local histogram filters. ACM Trans. Graphics 29, 4, 100:1–100:10. Google ScholarDigital Library
    17. Kopf, J., and Lischinski, D. 2012. Digital reconstruction of halftoned color comics. ACM Trans. Graphics 31, 6, 140:1–140:10. Google ScholarDigital Library
    18. Kopf, J., Cohen, M., Lischinski, D., and Uyttendaele, M. 2007. Joint bilateral upsampling. ACM Trans. Graphics 26, 3, 96. Google ScholarDigital Library
    19. Liu, Y., Lin, W.-C., and Hays, J. 2004. Near-regular texture analysis and manipulation. ACM Trans. Graphics 23, 3, 368–376. Google ScholarDigital Library
    20. Manjunath, B. S., and Ma, W. Y. 1996. Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Analysis Machine Intelligence 18, 8, 837–842. Google ScholarDigital Library
    21. Oh, B. M., Chen, M., Dorsey, J., and Durand, F. 2001. Image-based modeling and photo editing. In Proc. ACM SIGGRAPH 2001, ACM Press, New York, NY, USA, 433–442. Google ScholarDigital Library
    22. Paris, S., Hasinoff, S. W., and Kautz, J. 2011. Local Laplacian filters: Edge-aware image processing with a Laplacian pyramid. ACM Trans. Graphics 30, 4, 68:1–68:12. Google ScholarDigital Library
    23. Perona, P., and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis Machine Intelligence 12, 7, 629–639. Google ScholarDigital Library
    24. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., and Toyama, K. 2004. Digital photography with flash and no-flash image pairs. ACM Trans. Graphics 23, 664–672. Google ScholarDigital Library
    25. Rudin, L. I., Osher, S., and Fatemi, E. 1992. Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268. Google ScholarDigital Library
    26. Subr, K., Soler, C., and Durand, F. 2009. Edge-preserving multiscale image decomposition based on local extrema. ACM Trans. Graphics 28, 5, 147:1–147:9. Google ScholarDigital Library
    27. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In Proc. ICCV 1998, 839–846. Google ScholarDigital Library
    28. Tuzel, O., Porikli, F., and Meer, P. 2006. Region covariance: A fast descriptor for detection and classification. In Proc. ECCV 2006, 589–600. Google ScholarDigital Library
    29. Winnemöller, H., Olsen, S. C., and Gooch, B. 2006. Real-time video abstraction. ACM Trans. Graphics 25, 3, 1221–1226. Google ScholarDigital Library
    30. Xu, L., Lu, C., Xu, Y., and Jia, J. 2011. Image smoothing via L0 gradient minimization. ACM Trans. Graphics 30, 5, 174:1–174:12. Google ScholarDigital Library
    31. Xu, L., Yan, Q., Xia, Y., and Jia, J. 2012. Structure extraction from texture via relative total variation. ACM Trans. Graphics 31, 6, 139:1–139:10. Google ScholarDigital Library
    32. Yin, W., Goldfarb, D., and Osher, S. 2005. Image cartoon-texture decomposition and feature selection using the total variation regularized L1 functional. Variational, Geometric, and Level Set Methods in Computer Vision 3752, 73–84. Google ScholarDigital Library

ACM Digital Library Publication: