“Bidirectional lightcuts” by Walter, Khungurn and Bala

  • ©Bruce J. Walter, Pramook Khungurn, and Kavita Bala




    Bidirectional lightcuts



    Scenes modeling the real-world combine a wide variety of phenomena including glossy materials, detailed heterogeneous anisotropic media, subsurface scattering, and complex illumination. Predictive rendering of such scenes is difficult; unbiased algorithms are typically too slow or too noisy. Virtual point light (VPL) based algorithms produce low noise results across a wide range of performance/accuracy tradeoffs, from interactive rendering to high quality offline rendering, but their bias means that locally important illumination features may be missing.We introduce a bidirectional formulation and a set of weighting strategies to significantly reduce the bias in VPL-based rendering algorithms. Our approach, bidirectional lightcuts, maintains the scalability and low noise global illumination advantages of prior VPL-based work, while significantly extending their generality to support a wider range of important materials and visual cues. We demonstrate scalable, efficient, and low noise rendering of scenes with highly complex materials including gloss, BSSRDFs, and anisotropic volumetric models.


    1. Arbree, A., Walter, B., and Bala, K. 2008. Single-pass scalable subsurface rendering with lightcuts. Computer Graphics Forum 27, 2 (Apr.), 507–516.Google ScholarCross Ref
    2. Dammertz, H., Keller, A., and Lensch, H. P. A. 2010. Progressive point-light-based global illumination. Computer Graphics Forum 29, 8, 2504–2515.Google ScholarCross Ref
    3. Davidovič, T., Křivánek, J., Hašan, M., Slusallek, P., and Bala, K. 2010. Combining global and local virtual lights for detailed glossy illumination. ACM Trans. Graph. 29 (December), 143:1–143:8. Google ScholarDigital Library
    4. Engelhardt, T., Novak, J., and Dachsbacher, C. 2010. Instant multiple scattering for interactive rendering of heterogeneous participating media. Tech. Rep. December, KIT – Karlsruhe Institut of Technology.Google Scholar
    5. Hachisuka, T., and Jensen, H. W. 2009. Stochastic progressive photon mapping. ACM Transactions on Graphics 28, 5 (Dec.), 141:1–141:8. Google ScholarDigital Library
    6. Hašan, M., Pellacini, F., and Bala, K. 2007. Matrix row-column sampling for the many-light problem. ACM Transactions on Graphics 26, 3 (July), 26:1–26:10. Google ScholarDigital Library
    7. Hašan, M., Křivánek, J., Walter, B., and Bala, K. 2009. Virtual spherical lights for many-light rendering of glossy scenes. ACM Transactions on Graphics 28, 5 (Dec.), 143:1–143:6. Google ScholarDigital Library
    8. Jakob, W., Arbree, A., Moon, J. T., Bala, K., and Marschner, S. 2010. A radiative transfer framework for rendering materials with anisotropic structure. ACM Transactions on Graphics 29, 4 (July), 53:1–53:13. Google ScholarDigital Library
    9. Jarosz, W., Nowrouzezahrai, D., Sadeghi, I., and Jensen, H. W. 2011. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Transactions on Graphics 30, 1 (Jan.), 5:1–5:19. Google ScholarDigital Library
    10. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of ACM SIGGRAPH 2001, 511–518. Google ScholarDigital Library
    11. Jensen, H. W. 2001. Realistic image synthesis using photon mapping. A. K. Peters, Ltd., Natick, MA, USA. Google ScholarDigital Library
    12. Keller, A. 1997. Instant radiosity. In SIGGRAPH ’97, 49–56. Google ScholarDigital Library
    13. Knaus, C., and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Trans. Graph. 30 (May), 25:1–25:13. Google ScholarDigital Library
    14. Kollig, T., and Keller, A. 2004. Illumination in the Presence of Weak Singularities. In Monte Carlo and Quasi-Monte Carlo Methods, 245–257.Google Scholar
    15. Křivánek, J., Ferwerda, J. A., and Bala, K. 2010. Effects of global illumination approximations on material appearance. ACM Transactions on Graphics 29, 4 (July), 112:1–112:10. Google ScholarDigital Library
    16. Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Compugraphics ’93, 145–153.Google Scholar
    17. Novák, J., Engelhardt, T., and Dachsbacher, C. 2011. Screen-space bias compensation for interactive high-quality global illumination with virtual point lights. In Symposium on Interactive 3D Graphics and Games, ACM, 119–124. Google ScholarDigital Library
    18. Ou, J., and Pellacini, F. 2011. Lightslice: matrix slice sampling for the many-lights problem. ACM Trans. Graph. 30 (Dec.), 179:1–179:8. Google ScholarDigital Library
    19. Segovia, B., Iehl, J.-C., Mitanchey, R., and Péroche, B. 2006. Bidirectional instant radiosity. In Proceedings of the 17th Eurographics Workshop on Rendering. Google ScholarDigital Library
    20. Veach, E., and Guibas, L. 1994. Bidirectional estimators for light transport. In Fifth Eurographics Workshop on Rendering.Google Scholar
    21. Veach, E., and Guibas, L. J. 1995. Optimally combining sampling techniques for monte carlo rendering. In Proceedings of SIGGRAPH 95, 419–428. Google ScholarDigital Library
    22. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In SIGGRAPH ’97, 65–76. Google ScholarDigital Library
    23. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P. 2005. Lightcuts: A scalable approach to illumination. ACM Transactions on Graphics 24, 3 (Aug.), 1098–1107. Google ScholarDigital Library
    24. Walter, B., Arbree, A., Bala, K., and Greenberg, D. P. 2006. Multidimensional lightcuts. ACM Transactions on Graphics 25, 3 (July), 1081–1088. Google ScholarDigital Library
    25. Yue, Y., Iwasaki, K., Chen, B.-Y., Dobashi, Y., and Nishita, T. 2010. Unbiased, adaptive stochastic sampling for rendering inhomogeneous participating media. ACM Trans. Graph. 29 (December), 177:1–177:8. Google ScholarDigital Library
    26. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2011. Building volumetric appearance models of fabric using micro ct imaging. ACM Trans. Graph. 30 (Aug.), 44:1–44:10. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: