“Beyond points and beams: higher-dimensional photon samples for volumetric light transport” by Bitterli and Jarosz

  • ©Benedikt Bitterli and Wojciech Jarosz



Session Title:

    Rendering Volumes


    Beyond points and beams: higher-dimensional photon samples for volumetric light transport




    We develop a theory of volumetric density estimation which generalizes prior photon point (0D) and beam (1D) approaches to a broader class of estimators using “nD” samples along photon and/or camera subpaths. Volumetric photon mapping performs density estimation by point sampling propagation distances within the medium and performing density estimation over the generated points (0D). Beam-based (1D) approaches consider the expected value of this distance sampling process along the last camera and/or light subpath segments. Our theory shows how to replace propagation distance sampling steps across multiple bounces to form higher-dimensional samples such as photon planes (2D), photon volumes (3D), their camera path equivalents, and beyond. We perform a theoretical error analysis which reveals that in scenarios where beams already outperform points, each additional dimension of nD samples compounds these benefits further. Moreover, each additional sample dimension reduces the required dimensionality of the blurring needed for density estimation, allowing us to formulate, for the first time, fully unbiased forms of volumetric photon mapping. We demonstrate practical implementations of several of the new estimators our theory predicts, including both biased and unbiased variants, and show that they outperform state-of-the-art beam-based volumetric photon mapping by a factor of 2.4–40×.


    1. James Arvo. 1993. Transfer Functions in Global Illumination. In ACM SIGGRAPH ’93 Course Notes – Global Illumination.Google Scholar
    2. James Arvo and David Kirk. 1990. Particle transport and image synthesis. In Proc. SIGGRAPH. ACM, New York, NY. Google ScholarDigital Library
    3. James Richard Arvo. 1995a. Analytic methods for simulated light transport. Ph.D. Dissertation. Yale University.Google Scholar
    4. James R. Arvo. 1995b. Applications of Irradiance Tensors to the Simulation of Non-Lambertian Phenomena. In Proc. SIGGRAPH. Google ScholarDigital Library
    5. Rasmus Barringer, Carl Johan Gribel, and Tomas Akenine-Möller. 2012. High-quality Curve Rendering Using Line Sampled Visibility. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6 (Nov. 2012). Google ScholarDigital Library
    6. Niels Billen and Philip Dutré. 2016. Line Sampling for Direct Illumination. Computer Graphics Forum (Proc. EGSR) 35, 4 (June 2016). Google ScholarDigital Library
    7. Subrahmanyan Chandrasekhar. 1960. Radiative Transfer. Dover Publications.Google Scholar
    8. Min Chen and James Arvo. 2001. Simulating Non-Lambertian Phenomena Involving Linearly-Varying Luminaires. In Rendering Techniques (Proc. EGWR). Google ScholarCross Ref
    9. Min Chen and James R. Arvo. 2000. A Closed-Form Solution for the Irradiance due to Linearly-Varying Luminaires. In Rendering Techniques (Proc. EGWR). Google ScholarCross Ref
    10. Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan, Adam Arbree, Bruce Walter, and Jan Novák. 2014. Scalable Realistic Rendering with Many-Light Methods. Computer Graphics Forum 33, 1 (2014). Google ScholarDigital Library
    11. Eugene D’Eon and Geoffrey Irving. 2011. A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (2011).Google ScholarDigital Library
    12. Iliyan Georgiev, Jaroslav Křivànek, Tomas Davidovic, and Philipp Slusallek. 2012. Light transport simulation with vertex connection and merging. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 5 (2012).Google Scholar
    13. Iliyan Georgiev, Jaroslav Křivánek, Toshiya Hachisuka, Derek Nowrouzezahrai, and Wojciech Jarosz. 2013. Joint Importance Sampling of Low-Order Volumetric Scattering. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32, 6 (Nov. 2013). Google ScholarDigital Library
    14. Paul Glasserman. 2003. Monte Carlo Methods in Financial Engineering. Stochastic Modelling and Applied Probability, Vol. 53. Springer New York, Chapter 4. Google ScholarCross Ref
    15. Carl Johan Gribel, Rasmus Barringer, and Tomas Akenine-Möller. 2011. High-Quality Spatio-Temporal Rendering using Semi-Analytical Visibility. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (Aug. 2011). Google ScholarDigital Library
    16. Carl Johan Gribel, Michael Doggett, and Tomas Akenine-Möller. 2010. Analytical Motion Blur Rasterization with Compression. In Proceedings of HPG.Google Scholar
    17. Toshiya Hachisuka and Henrik Wann Jensen. 2009. Stochastic progressive photon mapping. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 28, 5 (2009).Google Scholar
    18. Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. 2008. Progressive Photon Mapping. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 27, 5 (2008).Google Scholar
    19. Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space extension for robust light transport simulation. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 5 (2012).Google Scholar
    20. Vlastimil Havran, Jiri Bittner, Robert Herzog, and Hans-Peter Seidel. 2005. Ray Maps for Global Illumination. In Rendering Techniques (Proc. EGSR).Google Scholar
    21. David Immel, Michael Cohen, and Donald Greenberg. 1986. A radiosity method for non-diffuse environments. Proc. SIGGRAPH 20, 4 (1986).Google ScholarDigital Library
    22. Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Henrik Wann Jensen. 2011a. A Comprehensive Theory of Volumetric Radiance Estimation Using Photon Points and Beams. ACM Trans. Graph. 30, 1 (Feb. 2011). Google ScholarDigital Library
    23. Wojciech Jarosz, Derek Nowrouzezahrai, Robert Thomas, Peter-Pike Sloan, and Matthias Zwicker. 2011b. Progressive Photon Beams. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 30, 6 (Dec. 2011). Google ScholarDigital Library
    24. Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. 2008. The Beam Radiance Estimate for Volumetric Photon Mapping. Computer Graphics Forum (Proc. Eurographics) 27, 2 (April 2008). Google ScholarDigital Library
    25. Henrik Wann Jensen. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., Natick, MA, USA. Google ScholarCross Ref
    26. Henrik Wann Jensen and Per H. Christensen. 1998. Efficient Simulation of Light Transport in Scenes With Participating Media Using Photon Maps. In Proc. SIGGRAPH.Google Scholar
    27. Thouis R. Jones and Ronald N. Perry. 2000. Antialiasing with Line Samples. In Rendering Techniques (Proc. EGWR). Springer-Verlag, London, UK. Google ScholarCross Ref
    28. James T. Kajiya. 1986. The Rendering Equation. Proc. SIGGRAPH 20, 4 (Aug. 1986). Google ScholarDigital Library
    29. Claude Knaus and Matthias Zwicker. 2011. Progressive Photon Mapping: A Probabilistic Approach. ACM Trans. Graph. 30, 3 (2011). Google ScholarDigital Library
    30. Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek Nowrouzezahrai, and Wojciech Jarosz. 2014. Unifying Points, Beams, and Paths in Volumetric Light Transport Simulation. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4 (July 2014).Google ScholarDigital Library
    31. Eric Lafortune and Yves Willems. 1993. Bi-directional path tracing. In Proc. Compugraphics.Google Scholar
    32. Eric Lafortune and Yves Willems. 1996. Rendering participating media with bidirectional path tracing. Photorealistic Rendering Techniques (Proc. EGWR) (1996).Google Scholar
    33. Iván Lux. 1978. Unified Definition of a Class of Monte Carlo Estimators. Nuclear Science and Engineering 67, 1 (July 1978).Google ScholarCross Ref
    34. Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012a. Progressive Virtual Beam Lights. Computer Graphics Forum (Proc. EGSR) 31, 4 (2012).Google Scholar
    35. Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012b. Virtual Ray Lights for Rendering Scenes with Participating Media. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4 (July 2012). Google ScholarDigital Library
    36. Derek Nowrouzezahrai, Ilya Baran, Kenny Mitchell, and Wojciech Jarosz. 2014. Visibility Silhouettes for Semi-Analytic Spherical Integration. Computer Graphics Forum 33, 1 (Feb. 2014). Google ScholarDigital Library
    37. Mark Pauly, Thomas Kollig, and Alexander Keller. 2000. Metropolis Light Transport for Participating media. In Rendering Techniques (Proc. EGWR). Google ScholarCross Ref
    38. Vincent Pegoraro and Steven G. Parker. 2009. An Analytical Solution to Single Scattering in Homogeneous Participating Media. Computer Graphics Forum (Proc. Eurographics) 28, 2 (2009).Google Scholar
    39. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory To Implementation (3rd ed.).Google Scholar
    40. Peter Schröder and Pat Hanrahan. 1993. On the Form Factor Between Two Polygons. In Proc. SIGGRAPH. 163–164. Google ScholarDigital Library
    41. Jerome Spanier. 1966. Two Pairs of Families of Estimators for Transport Problems. SIAM J. Appl. Math. 14, 4 (1966). Google ScholarCross Ref
    42. Jerome Spanier and Ely Meyer Gelbard. 1969. Monte Carlo principles and neutron transport problems. Addison-Wesley.Google Scholar
    43. Bo Sun, Ravi Ramamoorthi, Srinivasa G. Narasimhan, and Shree K. Nayar. 2005. A practical analytic single scattering model for real time rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3 (2005).Google ScholarDigital Library
    44. Xin Sun, Kun Zhou, Stephen Lin, and Baining Guo. 2010. Line space gathering for single scattering in large scenes. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4 (2010).Google ScholarDigital Library
    45. Stanley Tzeng, Anjul Patney, Andrew Davidson, Mohamed S. Ebeida, Scott A. Mitchell, and John D. Owens. 2012. High-quality Parallel Depth-of-field Using Line Samples. In Proceedings of HPG.Google Scholar
    46. Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Ph.D. Dissertation. Stanford, CA, USA.Google Scholar
    47. Eric Veach and Leonidas Guibas. 1994. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques (Proc. EGWR).Google Scholar
    48. Eric Veach and Leonidas Guibas. 1995. Optimally combining sampling techniques for Monte Carlo rendering. Proc. SIGGRAPH 29 (1995).Google ScholarDigital Library
    49. Eric Veach and Leonidas Guibas. 1997. Metropolis light transport. Proc. SIGGRAPH 31 (1997).Google ScholarDigital Library

ACM Digital Library Publication: