“Axis-aligned filtering for interactive physically-based diffuse indirect lighting” by Mehta, Wang, Ramamoorthi and Durand

  • ©Soham Uday Mehta, Brandon Wang, Ravi Ramamoorthi, and Frédo Durand

Conference:


Type:


Title:

    Axis-aligned filtering for interactive physically-based diffuse indirect lighting

Session/Category Title: Global Illumination


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We introduce an algorithm for interactive rendering of physically-based global illumination, based on a novel frequency analysis of indirect lighting. Our method combines adaptive sampling by Monte Carlo ray or path tracing, using a standard GPU-accelerated raytracer, with real-time reconstruction of the resulting noisy images. Our theoretical analysis assumes diffuse indirect lighting, with general Lambertian and specular receivers. In practice, we demonstrate accurate interactive global illumination with diffuse and moderately glossy objects, at 1-3 fps. We show mathematically that indirect illumination is a structured signal in the Fourier domain, with inherent band-limiting due to the BRDF and geometry terms. We extend previous work on sheared and axis-aligned filtering for motion blur and shadows, to develop an image-space filtering method for interreflections. Our method enables 5–8X reduced sampling rates and wall clock times, and converges to ground truth as more samples are added. To develop our theory, we overcome important technical challenges—unlike previous work, there is no light source to serve as a band-limit in indirect lighting, and we also consider non-parallel geometry of receiver and reflecting surfaces, without first-order approximations.

References:


    1. Bauszat, P., Eisemann, M., and Magnor, M. 2011. Guided image filtering for interactive high quality global illumination. Computer Graphics Forum (EGSR 11) 30, 4, 1361–1368. Google ScholarDigital Library
    2. Belcour, L., Soler, C., Subr, K., Holzschuch, N., and Durand, F. 2013. 5D covariance tracing for efficient defocus and motion blur. ACM Transactions on Graphics (to appear) {MIT-CSAIL-TR-2012-034}. Google ScholarDigital Library
    3. Ben-Artzi, A., Egan, K., Ramamoorthi, R., and Durand, F. 2008. A Precomputed Polynomial Representation for Interactive BRDF Editing with Global Illumination. ACM Transactions on Graphics 27, 2, Article 13, 1–13. Google ScholarDigital Library
    4. Chai, J., Chan, S., Shum, H., and Tong, X. 2000. Plenoptic Sampling. In SIGGRAPH 00, 307–318. Google ScholarDigital Library
    5. Cook, R., Porter, T., and Carpenter, L. 1984. Distributed Ray Tracing. In SIGGRAPH 84, 137–145. Google ScholarDigital Library
    6. Crassin, C., Neyret, F., Sainz, M., Green, S., and Eiseman, E. 2011. Interative indirect illumination using voxel cone tracing. Computer Graphics Forum 30, 7, 1921–1930.Google ScholarCross Ref
    7. Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. 2007. Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Transactions on Image Processing 16, 8, 2080–2095. Google ScholarDigital Library
    8. Dammertz, H., Sewtz, D., Hanika, J., and Lensch, H. 2010. Edge-avoiding a-trous wavelet transform for fast global illumination filtering. In High Performance Graphics (HPG), 67–75. Google ScholarDigital Library
    9. Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. 2005. A Frequency Analysis of Light Transport. ACM Transactions on Graphics (Proc. SIGGRAPH 05) 25, 3, 1115–1126. Google ScholarDigital Library
    10. Egan, K., Tseng, Y., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM Transactions on Graphics 28, 3. Google ScholarDigital Library
    11. Egan, K., Durand, F., and Ramamoorthi, R. 2011. Practical filtering for efficient ray-traced directional occlusion. ACM Transactions on Graphics (SIGGRAPH Asia 11) 30, 6. Google ScholarDigital Library
    12. Egan, K., Hecht, F., Durand, F., and Ramamoorthi, R. 2011. Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM Transactions on Graphics 30, 2. Google ScholarDigital Library
    13. Guo, B. 1998. Progressive radiance evaluation using directional coherence maps. In SIGGRAPH 98, 255–266. Google ScholarDigital Library
    14. Hachisuka, T., Jarosz, W., Weistroffer, R., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Transactions on Graphics 27, 3. Google ScholarDigital Library
    15. Hasan, M., Pellacini, F., and Bala, K. 2006. Direct to Indirect Transfer for Cinematic Relighting. ACM Transactions on Graphics (Proc. SIGGRAPH 06) 25, 3, 1089–1097. Google ScholarDigital Library
    16. Kajiya, J. 1986. The Rendering Equation. In SIGGRAPH 86, 143–150. Google ScholarDigital Library
    17. Kontkanen, J., Räsänen, J., and Keller, A. 2004. Irradiance filtering for monte carlo ray tracing. In Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer, 259–272.Google Scholar
    18. Krivanek, J., Gautron, P., Pattanaik, S., and Bouatouch, K. 2005. Radiance caching ofr efficient global illumination computation. IEEE Transactions on Visualization and Computer Graphics 11, 5, 550–561. Google ScholarDigital Library
    19. Lehtinen, J., Aila, T., Chen, J., Laine, S., and Durand, F. 2011. Temporal light field reconstruction for rendering distribution effects. ACM Transactions on Graphics 30, 4. Google ScholarDigital Library
    20. Lehtinen, J., Aila, T., Laine, S., and Durand, F. 2012. Reconstructing the indirect light field for global illumination. ACM Transactions on Graphics 31, 4. Google ScholarDigital Library
    21. Li, T., Wu, Y., and Chuang, Y. 2012. SURE-based optimization for adaptive sampling and reconstruction. ACM Transactions on Graphics (SIGGRAPH Asia 2012) 31, 6. Google ScholarDigital Library
    22. Maletz, D., and Wang, R. 2011. Importance point projection for GPU-based final gathering. Computer Graphics Forum (EGSR 11) 30, 4, 1327–1336. Google ScholarDigital Library
    23. McCool, M. 1999. Anisotropic diffusion for monte carlo noise reduction. ACM Transactions on Graphics 18, 2, 171–194. Google ScholarDigital Library
    24. Mehta, S., Wang, B., and Ramamoorthi, R. 2012. Axis-aligned filtering for interactive sampled soft shadows. ACM Transactions on Graphics (SIGGRAPH Asia 12) 31, 6. Google ScholarDigital Library
    25. Nayar, S., Krishnan, G., Grossberg, M., and Raskar, R. 2006. Fast separation of direct and global components of a scene using high frequency illumination. ACM Transactions on Graphics (SIGGRAPH 2006) 25, 3. Google ScholarDigital Library
    26. Overbeck, R., Donner, C., and Ramamoorthi, R. 2009. Adaptive Wavelet Rendering. ACM Transactions on Graphics (SIGGRAPH ASIA 09) 28, 5. Google ScholarDigital Library
    27. Parker, S., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. 2010. OptiX: A general purpose ray tracing engine. ACM Transactions on Graphics 29, 4, 66:1–66:13. Google ScholarDigital Library
    28. Ritschel, T., Engelhardt, T., Grosch, T., Seidel, H., Kautz, J., and Dachsbacher, C. 2009. Micro-rendering for scalable, parallel final gathering. vol. 28. Google ScholarDigital Library
    29. Ritschel, T., Dachsbacher, C., Grosch, T., and Kautz, J. 2012. The state of the art in interactive global illumination. Computer Graphics Forum 31, 1, 160–188. Google ScholarDigital Library
    30. Rouselle, F., Knaus, C., and Zwicker, M. 2012. Adaptive rendering with non-local means filtering. ACM Transactions on Graphics (SIGGRAPH Asia 2012) 31, 6. Google ScholarDigital Library
    31. Rushmeier, H., and Ward, G. 1994. Energy preserving non-linear filters. 131–138. Google ScholarDigital Library
    32. Sen, P., and Darabi, S. 2012. On filtering the noise from the random parameters in monte carlo rendering. ACM Transactions on Graphics 31, 3. Google ScholarDigital Library
    33. Shirley, P., Aila, T., Cohen, J., Enderton, E., Laine, S., Luebke, D., and McGuire, M. 2011. A local image reconstruction algorithm for stochastic rendering. In ACM Symposium on Interactive 3D Graphics, 9–14. Google ScholarDigital Library
    34. Sloan, P., Kautz, J., and Snyder, J. 2002. Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments. ACM Transactions on Graphics (Proc. SIGGRAPH 02) 21, 3, 527–536. Google ScholarDigital Library
    35. Soler, C., Subr, K., Durand, F., Holzschuch, N., and Sillion, F. 2009. Fourier depth of field. ACM Transactions on Graphics 28, 2. Google ScholarDigital Library
    36. van Antwerpen, D. 2011. Improving SIMD efficiency for parallel monte carlo light transport on the GPU. In High Performance Graphics. Google ScholarDigital Library
    37. Wald, I., Benthin, C., Slusallek, P., Kollig, T., and Keller, A. 2002. Interactive global illumination using fast ray tracing. In Rendering Techiques (EGWR 02). Google ScholarDigital Library
    38. Wald, I., Mark, W. R., Günther, J., Boulos, S., Ize, T., Hunt, W., Parker, S. G., and Shirley, P. 2007. State of the Art in Ray Tracing Animated Scenes. In STAR Proceedings of Eurographics 07, The Eurographics Association, D. Schmalstieg and J. Bittner, Eds., 89–116.Google Scholar
    39. Wang, R., Wang, R., Zhou, K., Pan, M., and Bao, H. 2009. An efficient GPU-based approach for interactive global illumination. ACM Transactions on Graphics 28, 3. Google ScholarDigital Library
    40. Ward, G., and Heckbert, P. 1992. Irradiance Gradients. In Eurographics Rendering Workshop 92, 85–98.Google Scholar
    41. Ward, G., Rubinstein, F., and Clear, R. 1988. A ray tracing solution for diffuse interreflections. In SIGGRAPH 88, 85–92. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: