“Artemis: articulated neural pets with appearance and motion synthesis” by Luo, Xu, Jiang, Zhou, Qiu, et al. …

  • ©Haimin Luo, Teng Xu, Yuheng Jiang, Chenglin Zhou, Qiwei Qiu, Yingliang Zhang, Wei Yang, Jingyi Yu, and Lan Xu

Conference:


Type:


Title:

    Artemis: articulated neural pets with appearance and motion synthesis

Presenter(s)/Author(s):



Abstract:


    We, humans, are entering into a virtual era and indeed want to bring animals to the virtual world as well for companion. Yet, computer-generated (CGI) furry animals are limited by tedious off-line rendering, let alone interactive motion control. In this paper, we present ARTEMIS, a novel neural modeling and rendering pipeline for generating ARTiculated neural pets with appEarance and Motion synthesIS. Our ARTEMIS enables interactive motion control, real-time animation, and photo-realistic rendering of furry animals. The core of our ARTEMIS is a neural-generated (NGI) animal engine, which adopts an efficient octree-based representation for animal animation and fur rendering. The animation then becomes equivalent to voxel-level deformation based on explicit skeletal warping. We further use a fast octree indexing and efficient volumetric rendering scheme to generate appearance and density features maps. Finally, we propose a novel shading network to generate high-fidelity details of appearance and opacity under novel poses from appearance and density feature maps. For the motion control module in ARTEMIS, we combine state-of-the-art animal motion capture approach with recent neural character control scheme. We introduce an effective optimization scheme to reconstruct the skeletal motion of real animals captured by a multi-view RGB and Vicon camera array. We feed all the captured motion into a neural character control scheme to generate abstract control signals with motion styles. We further integrate ARTEMIS into existing engines that support VR headsets, providing an unprecedented immersive experience where a user can intimately interact with a variety of virtual animals with vivid movements and photo-realistic appearance. Extensive experiments and showcases demonstrate the effectiveness of our ARTEMIS system in achieving highly realistic rendering of NGI animals in real-time, providing daily immersive and interactive experiences with digital animals unseen before. We make available our ARTEMIS model and dynamic furry animal dataset at https://haiminluo.github.io/publication/artemis/.

References:


    1. Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lempitsky. 2020. Neural point-based graphics. In European Conference on Computer Vision. Springer, 696–712.Google ScholarDigital Library
    2. Pang Anqi, Chen Xin, Luo Haimin, Wu Minye, Yu Jingyi, and Xu Lan. 2021. Few-shot Neural Human Performance Rendering from Sparse RGBD Videos. In Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI-21.Google Scholar
    3. Yongtang Bao and Yue Qi. 2016. Realistic Hair Modeling from a Hybrid Orientation Field. Vis. Comput. 32, 6–8 (jun 2016), 729–738. Google ScholarDigital Library
    4. Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. 2020. Neural reflectance fields for appearance acquisition. arXiv preprint arXiv:2008.03824 (2020).Google Scholar
    5. Benjamin Biggs, Oliver Boyne, James Charles, Andrew Fitzgibbon, and Roberto Cipolla. 2020. Who left the dogs out? 3d animal reconstruction with expectation maximization in the loop. In European Conference on Computer Vision. Springer, 195–211.Google ScholarDigital Library
    6. Benjamin Biggs, Thomas Roddick, Andrew Fitzgibbon, and Roberto Cipolla. 2018. Creatures great and smal: Recovering the shape and motion of animals from video. In Asian Conference on Computer Vision. Springer, 3–19.Google Scholar
    7. Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Barron, Ce Liu, and Hendrik Lensch. 2021. Nerd: Neural reflectance decomposition from image collections. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 12684–12694.Google ScholarCross Ref
    8. Thomas J Cashman and Andrew W Fitzgibbon. 2012. What shape are dolphins? building 3d morphable models from 2d images. IEEE transactions on pattern analysis and machine intelligence 35, 1 (2012), 232–244.Google Scholar
    9. Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and Richard Newcombe. 2020. Deep local shapes: Learning local sdf priors for detailed 3d reconstruction. In European Conference on Computer Vision. Springer, 608–625.Google ScholarDigital Library
    10. Menglei Chai, Linjie Luo, Kalyan Sunkavalli, Nathan Carr, Sunil Hadap, and Kun Zhou. 2015. High-Quality Hair Modeling from a Single Portrait Photo. ACM Trans. Graph. 34, 6, Article 204 (oct 2015), 10 pages. Google ScholarDigital Library
    11. Menglei Chai, Tianjia Shao, Hongzhi Wu, Yanlin Weng, and Kun Zhou. 2016. AutoHair: Fully Automatic Hair Modeling from a Single Image. ACM Trans. Graph. 35, 4, Article 116 (jul 2016), 12 pages. Google ScholarDigital Library
    12. Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao Su. 2021. MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo. arXiv:2103.15595 [cs.CV]Google Scholar
    13. Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. 2019. Learning to predict 3d objects with an interpolation-based differentiable renderer. In Advances in Neural Information Processing Systems. 9609–9619.Google Scholar
    14. Matt Jen-Yuan Chiang, Benedikt Bitterli, Chuck Tappan, and Brent Burley. 2015. A Practical and Controllable Hair and Fur Model for Production Path Tracing. In ACM SIGGRAPH 2015 Talks (Los Angeles, California) (SIGGRAPH ’15). Association for Computing Machinery, New York, NY, USA, Article 23, 1 pages. Google ScholarDigital Library
    15. Eugene d’Eon, Guillaume Francois, Martin Hill, Joe Letteri, and Jean-Marie Aubry. 2011. An Energy-Conserving Hair Reflectance Model. In Proceedings of the Twenty-Second Eurographics Conference on Rendering (Prague, Czech Republic) (EGSR ’11). Eurographics Association, Goslar, DEU, 1181–1187. Google ScholarDigital Library
    16. Alexandre Derouet-Jourdan, Florence Bertails-Descoubes, and Joëlle Thollot. 2013. Floating Tangents for Approximating Spatial Curves with G1 Piecewise Helices. Comput. Aided Geom. Des. 30, 5 (jun 2013), 490–520. Google ScholarDigital Library
    17. Zhipeng Ding, Yongtang Bao, and Yue Qi. 2016. Single-View Hair Modeling Based on Orientation and Helix Fitting. In 2016 International Conference on Virtual Reality and Visualization (ICVRV). 286–291. Google ScholarCross Ref
    18. Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin. 2021. Fastnerf: High-fidelity neural rendering at 200fps. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 14346–14355.Google ScholarCross Ref
    19. Marc Habermann, Lingjie Liu, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll, and Christian Theobalt. 2021. Real-Time Deep Dynamic Characters. ACM Trans. Graph. 40, 4, Article 94 (jul 2021), 16 pages. Google ScholarDigital Library
    20. Tong He, Yuanlu Xu, Shunsuke Saito, Stefano Soatto, and Tony Tung. 2021. ARCH++: Animation-ready clothed human reconstruction revisited. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 11046–11056.Google ScholarCross Ref
    21. Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul Debevec. 2021. Baking neural radiance fields for real-time view synthesis. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 5875–5884.Google ScholarCross Ref
    22. Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks for character control. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–13.Google ScholarDigital Library
    23. Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li. 2015. Single-View Hair Modeling Using a Hairstyle Database. ACM Trans. Graph. 34, 4, Article 125 (jul 2015), 9 pages. Google ScholarDigital Library
    24. Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and Tony Tung. 2020. Arch: Animatable reconstruction of clothed humans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3093–3102.Google ScholarCross Ref
    25. Eldar Insafutdinov and Alexey Dosovitskiy. 2018. Unsupervised Learning of Shape and Pose with Differentiable Point Clouds. In Advances in Neural Information Processing Systems (NeurIPS).Google Scholar
    26. Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 1125–1134.Google ScholarCross Ref
    27. Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, Thomas Funkhouser, et al. 2020. Local implicit grid representations for 3d scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 6001–6010.Google ScholarCross Ref
    28. Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-time style transfer and super-resolution. In European conference on computer vision. Springer, 694–711.Google ScholarCross Ref
    29. J. T. Kajiya and T. L. Kay. 1989. Rendering Fur with Three Dimensional Textures. SIGGRAPH Comput. Graph. 23, 3 (jul 1989), 271–280. Google ScholarDigital Library
    30. Angjoo Kanazawa, Shahar Kovalsky, Ronen Basri, and David Jacobs. 2016. Learning 3d deformation of animals from 2d images. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 365–374.Google Scholar
    31. Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. 2018. Learning category-specific mesh reconstruction from image collections. In Proceedings of the European Conference on Computer Vision (ECCV). 371–386.Google ScholarDigital Library
    32. Tero Karras. 2012. Maximizing parallelism in the construction of BVHs, octrees, and k-d trees. In Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on High-Performance Graphics. 33–37.Google ScholarDigital Library
    33. Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3d mesh renderer. In Proceedings of the IEEE conference on computer vision and pattern recognition. 3907–3916.Google ScholarCross Ref
    34. Sinead Kearney, Wenbin Li, Martin Parsons, Kwang In Kim, and Darren Cosker. 2020. RGBD-Dog: Predicting Canine Pose from RGBD Sensors. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarCross Ref
    35. Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings. arXiv:http://arxiv.org/abs/1312.6114v10 [stat.ML]Google Scholar
    36. Maria Kolos, Artem Sevastopolsky, and Victor Lempitsky. 2020. TRANSPR: Transparency Ray-Accumulating Neural 3D Scene Point Renderer. In 2020 International Conference on 3D Vision (3DV). IEEE, 1167–1175.Google ScholarCross Ref
    37. Zhengfei Kuang, Kyle Olszewski, Menglei Chai, Zeng Huang, Panos Achlioptas, and Sergey Tulyakov. [n.d.]. NeROIC: Neural Object Capture and Rendering from Online Image Collections. ([n. d.]).Google Scholar
    38. Youngjoong Kwon, Dahun Kim, Duygu Ceylan, and Henry Fuchs. 2021. Neural human performer: Learning generalizable radiance fields for human performance rendering. Advances in Neural Information Processing Systems 34 (2021).Google Scholar
    39. Christoph Lassner and Michael Zollhofer. 2021. Pulsar: Efficient Sphere-based Neural Rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1440–1449.Google ScholarCross Ref
    40. Ruilong Li, Kyle Olszewski, Yuliang Xiu, Shunsuke Saito, Zeng Huang, and Hao Li. 2020a. Volumetric Human Teleportation. In ACM SIGGRAPH 2020 Real-Time Live! (Virtual Event, USA) (SIGGRAPH ’20). Association for Computing Machinery, New York, NY, USA, Article 9, 1 pages. Google ScholarDigital Library
    41. Ruilong Li, Yuliang Xiu, Shunsuke Saito, Zeng Huang, Kyle Olszewski, and Hao Li. 2020b. Monocular real-time volumetric performance capture. In European Conference on Computer Vision. Springer, 49–67.Google ScholarDigital Library
    42. Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. 2021. Neural scene flow fields for space-time view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 6498–6508.Google ScholarCross Ref
    43. Chen-Hsuan Lin, Chen Kong, and Simon Lucey. 2018. Learning efficient point cloud generation for dense 3d object reconstruction. In proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.Google ScholarCross Ref
    44. Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020a. Neural sparse voxel fields. Advances in Neural Information Processing Systems 33 (2020), 15651–15663.Google Scholar
    45. Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu Sarkar, Jiatao Gu, and Christian Theobalt. 2021. Neural Actor: Neural Free-view Synthesis of Human Actors with Pose Control. ACM Trans. Graph.(ACM SIGGRAPH Asia) (2021).Google ScholarDigital Library
    46. Lingjie Liu, Weipeng Xu, Marc Habermann, Michael Zollhöfer, Florian Bernard, Hyeongwoo Kim, Wenping Wang, and Christian Theobalt. 2020b. Neural Human Video Rendering by Learning Dynamic Textures and Rendering-to-Video Translation. IEEE Transactions on Visualization and Computer Graphics PP (05 2020), 1–1. Google ScholarDigital Library
    47. Lingjie Liu, Weipeng Xu, Michael Zollhoefer, Hyeongwoo Kim, Florian Bernard, Marc Habermann, Wenping Wang, and Christian Theobalt. 2019. Neural rendering and reenactment of human actor videos. ACM Transactions on Graphics (TOG) 38, 5 (2019), 1–14.Google ScholarDigital Library
    48. Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann, and Yaser Sheikh. 2019. Neural Volumes: Learning Dynamic Renderable Volumes from Images. ACM Trans. Graph. 38, 4, Article 65 (jul 2019), 14 pages. Google ScholarDigital Library
    49. Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer, Yaser Sheikh, and Jason Saragih. 2021. Mixture of Volumetric Primitives for Efficient Neural Rendering. ACM Trans. Graph. 40, 4, Article 59 (jul 2021), 13 pages. Google ScholarDigital Library
    50. Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. 2015. SMPL: A skinned multi-person linear model. ACM transactions on graphics (TOG) 34, 6 (2015), 1–16.Google ScholarDigital Library
    51. H. Luo, A. Chen, Q. Zhang, B. Pang, M. Wu, L. Xu, and J. Yu. 2021. Convolutional Neural Opacity Radiance Fields. In 2021 IEEE International Conference on Computational Photography (ICCP). IEEE Computer Society, Los Alamitos, CA, USA, 1–12. Google ScholarCross Ref
    52. Linjie Luo, Hao Li, and Szymon Rusinkiewicz. 2013. Structure-Aware Hair Capture. ACM Transactions on Graphics (Proc. SIGGRAPH) 32, 4 (July 2013).Google ScholarDigital Library
    53. Stephen R. Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Worley, and Pat Hanrahan. 2003. Light Scattering from Human Hair Fibers. ACM Trans. Graph. 22, 3 (jul 2003), 780–791. Google ScholarDigital Library
    54. Ricardo Martin-Brualla, Rohit Pandey, Shuoran Yang, Pavel Pidlypenskyi, Jonathan Taylor, Julien Valentin, Sameh Khamis, Philip Davidson, Anastasia Tkach, Peter Lincoln, Adarsh Kowdle, Christoph Rhemann, Dan B Goldman, Cem Keskin, Steve Seitz, Shahram Izadi, and Sean Fanello. 2018. <i>LookinGood</i>: Enhancing Performance Capture with Real-Time Neural Re-Rendering. ACM Trans. Graph. 37, 6, Article 255 (dec 2018), 14 pages. Google ScholarDigital Library
    55. Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duckworth. 2021. Nerf in the wild: Neural radiance fields for unconstrained photo collections. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7210–7219.Google ScholarCross Ref
    56. Alexander Mathis and Richard A. Warren. 2018. On the inference speed and video-compression robustness of DeepLabCut. bioRxiv (2018). arXiv:https://www.biorxiv.org/content/early/2018/10/30/457242.full.pdf Google ScholarCross Ref
    57. Wojciech Matusik, Hanspeter Pfister, Addy Ngan, Paul Beardsley, Remo Ziegler, and Leonard McMillan. 2002. Image-Based 3D Photography Using Opacity Hulls. ACM Trans. Graph. 21, 3 (jul 2002), 427–437. Google ScholarDigital Library
    58. Quan Meng, Anpei Chen, Haimin Luo, Minye Wu, Hao Su, Lan Xu, Xuming He, and Jingyi Yu. 2021. Gnerf: Gan-based neural radiance field without posed camera. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 6351–6361.Google ScholarCross Ref
    59. Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. 2019. Occupancy networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4460–4470.Google ScholarCross Ref
    60. Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. 2020. Nerf: Representing scenes as neural radiance fields for view synthesis. In European conference on computer vision. Springer, 405–421.Google ScholarDigital Library
    61. Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H. Mueller, Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, and Markus Steinberger. 2021. DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks. Computer Graphics Forum 40, 4 (2021). Google ScholarCross Ref
    62. Sylvain Paris, Hector M. Briceño, and François X. Sillion. 2004. Capture of Hair Geometry from Multiple Images. ACM Trans. Graph. 23, 3 (aug 2004), 712–719. Google ScholarDigital Library
    63. Sylvain Paris, Will Chang, Oleg I. Kozhushnyan, Wojciech Jarosz, Wojciech Matusik, Matthias Zwicker, and Frédo Durand. 2008. Hair Photobooth: Geometric and Photometric Acquisition of Real Hairstyles. ACM Trans. Graph. 27, 3 (aug 2008), 1–9. Google ScholarDigital Library
    64. Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. 2019. Deepsdf: Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 165–174.Google ScholarCross Ref
    65. Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo Martin-Brualla. 2021a. Nerfies: Deformable neural radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 5865–5874.Google ScholarCross Ref
    66. Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-Brualla, and Steven M. Seitz. 2021b. HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields. ACM Trans. Graph. 40, 6, Article 238 (dec 2021).Google ScholarCross Ref
    67. Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and Michael J. Black. 2019. Expressive Body Capture: 3D Hands, Face, and Body from a Single Image. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).Google Scholar
    68. Sida Peng, Junting Dong, Qianqian Wang, Shangzhan Zhang, Qing Shuai, Xiaowei Zhou, and Hujun Bao. 2021a. Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 14314–14323.Google ScholarCross Ref
    69. Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. 2020. Convolutional occupancy networks. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16. Springer, 523–540.Google Scholar
    70. Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, and Xiaowei Zhou. 2021b. Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9054–9063.Google ScholarCross Ref
    71. Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. 2021. D-nerf: Neural radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10318–10327.Google ScholarCross Ref
    72. Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. 2021. Kilonerf: Speeding up neural radiance fields with thousands of tiny mlps. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 14335–14345.Google ScholarCross Ref
    73. Riccardo Roveri, Lukas Rahmann, Cengiz Oztireli, and Markus Gross. 2018. A network architecture for point cloud classification via automatic depth images generation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4176–4184.Google ScholarCross Ref
    74. Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa, and Hao Li. 2019. Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 2304–2314.Google ScholarCross Ref
    75. Andrew Selle, Michael Lentine, and Ronald Fedkiw. 2008. A Mass Spring Model for Hair Simulation. ACM Trans. Graph. 27, 3 (aug 2008), 1–11. Google ScholarDigital Library
    76. Aliaksandra Shysheya, Egor Zakharov, Kara-Ali Aliev, Renat Bashirov, Egor Burkov, Karim Iskakov, Aleksei Ivakhnenko, Yury Malkov, Igor Pasechnik, Dmitry Ulyanov, et al. 2019. Textured neural avatars. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2387–2397.Google ScholarCross Ref
    77. Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. 2020. Implicit neural representations with periodic activation functions. Advances in Neural Information Processing Systems 33 (2020).Google Scholar
    78. Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and Michael Zollhofer. 2019. Deepvoxels: Learning persistent 3d feature embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2437–2446.Google ScholarCross Ref
    79. Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural state machine for character-scene interactions. ACM Trans. Graph. 38, 6 (2019), 209–1.Google ScholarDigital Library
    80. Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. 2020. Local motion phases for learning multi-contact character movements. ACM Transactions on Graphics (TOG) 39, 4 (2020), 54–1.Google ScholarDigital Library
    81. Sebastian Starke, Yiwei Zhao, Fabio Zinno, and Taku Komura. 2021. Neural animation layering for synthesizing martial arts movements. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–16.Google ScholarDigital Library
    82. Shih-Yang Su, Frank Yu, Michael Zollhöfer, and Helge Rhodin. 2021. A-nerf: Articulated neural radiance fields for learning human shape, appearance, and pose. Advances in Neural Information Processing Systems 34 (2021).Google Scholar
    83. Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. 2020. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. NeurIPS (2020).Google Scholar
    84. Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lassner, and Christian Theobalt. 2021. Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a dynamic scene from monocular video. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 12959–12970.Google ScholarCross Ref
    85. Cen Wang, Minye Wu, Ziyu Wang, Liao Wang, Hao Sheng, and Jingyi Yu. 2020. Neural Opacity Point Cloud. IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 7 (2020), 1570–1581. Google ScholarCross Ref
    86. Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. 2021a. Ibrnet: Learning multi-view image-based rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4690–4699.Google ScholarCross Ref
    87. Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu. 2021b. NeRF-: Neural Radiance Fields Without Known Camera Parameters. arXiv preprint arXiv:2102.07064 (2021).Google Scholar
    88. Mark Weber, Huiyu Wang, Siyuan Qiao, Jun Xie, Maxwell D Collins, Yukun Zhu, Liangzhe Yuan, Dahun Kim, Qihang Yu, Daniel Cremers, et al. 2021. DeepLab2: A TensorFlow Library for Deep Labeling. arXiv preprint arXiv:2106.09748 (2021).Google Scholar
    89. Yichen Wei, Eyal Ofek, Long Quan, and Heung-Yeung Shum. 2005. Modeling Hair from Multiple Views. In ACM SIGGRAPH 2005 Papers (Los Angeles, California) (SIGGRAPH ’05). Association for Computing Machinery, New York, NY, USA, 816–820. Google ScholarDigital Library
    90. Minye Wu, Yuehao Wang, Qiang Hu, and Jingyi Yu. 2020. Multi-view neural human rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1682–1691.Google ScholarCross Ref
    91. Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil Kim. 2021. Space-time neural irradiance fields for free-viewpoint video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9421–9431.Google ScholarCross Ref
    92. Hongyi Xu, Thiemo Alldieck, and Cristian Sminchisescu. 2021. H-nerf: Neural radiance fields for rendering and temporal reconstruction of humans in motion. Advances in Neural Information Processing Systems 34 (2021).Google Scholar
    93. Lan Xu, Zhuo Su, Lei Han, Tao Yu, Yebin Liu, and Lu Fang. 2020. UnstructuredFusion: Realtime 4D Geometry and Texture Reconstruction Using Commercial RGBD Cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 10 (2020), 2508–2522. Google ScholarDigital Library
    94. Ling-Qi Yan, Chi-Wei Tseng, Henrik Wann Jensen, and Ravi Ramamoorthi. 2015. Physically-Accurate Fur Reflectance: Modeling, Measurement and Rendering. ACM Trans. Graph. 34, 6, Article 185 (oct 2015), 13 pages. Google ScholarDigital Library
    95. Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ramanan, Andrea Vedaldi, and Hanbyul Joo. 2021. BANMo: Building Animatable 3D Neural Models from Many Casual Videos. arXiv preprint arXiv:2112.12761 (2021).Google Scholar
    96. Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Alberto Rodriguez, Phillip Isola, and Tsung-Yi Lin. 2021. iNeRF: Inverting Neural Radiance Fields for Pose Estimation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google ScholarDigital Library
    97. Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung. 2019. Differentiable surface splatting for point-based geometry processing. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1–14.Google ScholarDigital Library
    98. Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021. PlenOctrees for Real-time Rendering of Neural Radiance Fields. In ICCV.Google Scholar
    99. Cem Yuksel, Scott Schaefer, and John Keyser. 2009. Hair Meshes. ACM Trans. Graph. 28, 5 (dec 2009), 1–7. Google ScholarDigital Library
    100. He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-Adaptive Neural Networks for Quadruped Motion Control. ACM Trans. Graph. 37, 4, Article 145 (jul 2018), 11 pages. Google ScholarDigital Library
    101. Jiakai Zhang, Xinhang Liu, Xinyi Ye, Fuqiang Zhao, Yanshun Zhang, Minye Wu, Yingliang Zhang, Lan Xu, and Jingyi Yu. 2021. Editable Free-Viewpoint Video Using a Layered Neural Representation. ACM Trans. Graph. 40, 4, Article 149 (jul 2021), 18 pages. Google ScholarDigital Library
    102. Silvia Zuffi, Angjoo Kanazawa, Tanya Berger-Wolf, and Michael J Black. 2019. Three-D Safari: Learning to Estimate Zebra Pose, Shape, and Texture from Images” In the Wild”. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 5359–5368.Google ScholarCross Ref
    103. Silvia Zuffi, Angjoo Kanazawa, David W Jacobs, and Michael J Black. 2017. 3D menagerie: Modeling the 3D shape and pose of animals. In Proceedings of the IEEE conference on computer vision and pattern recognition. 6365–6373.Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page: