“Appearance manifolds for modeling time-variant appearance of materials” by Wang, Tong, Lin, Pan, Wang, et al. …

  • ©Jiaping Wang, Xin Tong, Stephen Lin, Minghao Pan, Chao Wang, Hujun Bao, Baining Guo, and Heung-Yeung Shum

Conference:


Type:


Title:

    Appearance manifolds for modeling time-variant appearance of materials

Presenter(s)/Author(s):



Abstract:


    We present a visual simulation technique called appearance manifolds for modeling the time-variant surface appearance of a material from data captured at a single instant in time. In modeling time-variant appearance, our method takes advantage of the key observation that concurrent variations in appearance over a surface represent different degrees of weathering. By reorganizing these various appearances in a manner that reveals their relative order with respect to weathering degree, our method infers spatial and temporal appearance properties of the material’s weathering process that can be used to convincingly generate its weathered appearance at different points in time. Results with natural non-linear reflectance variations are demonstrated in applications such as visual simulation of weathering on 3D models, increasing and decreasing the weathering of real objects, and material transfer with weathering effects.

References:


    1. Badler, N. I., and Becket, W. 1990. Imperfection for realistic image synthesis. J. Visualization and Computer Animation 1 (Aug), 26–32.Google ScholarCross Ref
    2. Blinn, J. F. 1982. Light reflection functions for simulation of clouds and dusty surfaces. In SIGGRAPH ’82, 21–29. Google ScholarDigital Library
    3. Bosch, C., Pueyo, X., Merillou, S., and Ghazanfarpour, D. 2004. A physically-based model for rendering realistic scratches. Computer Graphics Forum 23, 3, 361–370.Google ScholarCross Ref
    4. Chen, Y., Xia, L., Wong, T.-T., Tong, X., Bao, H., Guo, B., and Shum, H.-Y. 2005. Visual simulation of weathering by γ-ton tracing. ACM Trans. Graph. 24, 3, 1127–1133. Google ScholarDigital Library
    5. Cook, R. L. 1984. Shade trees. In SIGGRAPH ’84, 223–231. Google ScholarDigital Library
    6. Desbenoit, B., Galin, E., and Akkouche, S. 2004. Simulating and modeling lichen growth. Computer Graphics Forum 23, 3, 341–350.Google ScholarCross Ref
    7. Dorsey, J., and Hanrahan, P. 1996. Modeling and rendering of metallic patinas. In SIGGRAPH ’96, 387–396. Google ScholarDigital Library
    8. Dorsey, J., Pedersen, H. K., and Hanrahan, P. 1996. Flow and changes in appearance. In SIGGRAPH ’96, 411–420. Google ScholarDigital Library
    9. Dorsey, J., Edelman, A., Jensen, H. W., Legakis, J., and Pedersen, H. K. 1999. Modeling and rendering of weathered stone. In SIGGRAPH ’99, 225–234. Google ScholarDigital Library
    10. Enrique, S., Koudelka, M., Belhumeur, P., Dorsey, J., Nayar, S., and Ramamoorthi, R. 2005. Time-varying textures. Tech. Rep. CUCS-023-05, Columbia University.Google Scholar
    11. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. ACM Trans. Graph. 22, 3, 749–758. Google ScholarDigital Library
    12. Georghiades, A. S., Lu, J., Xu, C., Dorsey, J., and Rushmeier, H. 2005. Observing and transferring material histories. Tech. Rep. 1329, Yale University.Google Scholar
    13. Gu, J., Tu, C.-I., Ramamoorthi, R., Belhumeur, P., Matusik, W., and Nayar, S. 2006. Time-varying surface appearance: Acquisition, modeling and rendering. ACM Trans. Graph. 25, 3. Google ScholarDigital Library
    14. Hsu, S.-C., and Wong, T.-T. 1995. Simulating dust accumulation. IEEE Comput. Graph. Appl. 15, 1, 18–22. Google ScholarDigital Library
    15. Jensen, H. W., Legakis, J., and Dorsey, J. 1999. Rendering of wet materials. In Rendering Techniques 99, 273–282. Google ScholarDigital Library
    16. Kautz, J., Vázquez, P.-P., Heidrich, W., and Seidel, H.-P. 2000. Unified approach to prefiltered environment maps. In Rendering Techniques 2000, 185–196. Google ScholarDigital Library
    17. Kwatra, V., Essa, I., Bobick, A., and Kwatra, N. 2005. Texture optimization for example-based synthesis. ACM Trans. Graph. 24, 3 (July), 795–802. Google ScholarDigital Library
    18. Lefebvre, S., and Hoppe, H. 2005. Parallel controllable texture synthesis. ACM Trans. Graph. 24, 3 (July), 777–786. Google ScholarDigital Library
    19. Lu, J., Georghiades, A. S., Dorsey, J., Rushmeier, H., and Xu, C. 2005. Synthesis of material drying history: Phenomenon modeling, transferring and rendering. Euro. Workshop Nat. Phenomena. Google ScholarDigital Library
    20. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Trans. Graph. 22, 3, 759–769. Google ScholarDigital Library
    21. Matusik, W., Zwicker, M., and Durand, F. 2005. Texture design using a simplicial complex of morphable textures. ACM Trans. Graph. 24, 3, 787–794. Google ScholarDigital Library
    22. Merillou, S., Dischler, J.-M., and Ghazanfarpour, D. 2001. Corrosion: simulating and rendering. In Graphics Interface 2001, 167–174. Google ScholarDigital Library
    23. Miller, G. 1994. Efficient algorithms for local and global accessibility shading. In SIGGRAPH ’94, 319–326. Google ScholarDigital Library
    24. Musgrave, F. K., Peachey, D., Perlin, K., and Worley, S. 1994. Texturing and modeling: a procedural approach. Academic Press Professional, Inc., San Diego, CA, USA. Google ScholarDigital Library
    25. Nakamae, E., Kaneda, K., Okamoto, T., and Nishita, T. 1990. A lighting model aiming at drive simulators. In SIGGRAPH ’90, 395–404. Google ScholarDigital Library
    26. Paquette, E., Poulin, P., and Drettakis, G. 2002. The simulation of paint cracking and peeling. In Graphics Interface 2002, 59–68.Google Scholar
    27. Roweis, S., and Saul, L. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290, 5500 (Dec), 2323–2326.Google ScholarCross Ref
    28. Tenenbaum, J. B., de Silva, V., and Langford, J. C. 2000. A global geometric framework for nonlinear dimensionality reduction. Science 290, 5500 (Dec), 2319–2322.Google ScholarCross Ref
    29. Turk, G. 1991. Generating textures on arbitrary surfaces using reaction-diffusion. In SIGGRAPH ’91, 289–298. Google ScholarDigital Library
    30. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In SIGGRAPH ’92, 265–272. Google ScholarDigital Library
    31. Witkin, A., and Kass, M. 1991. Reaction-diffusion textures. In SIGGRAPH ’91, 299–308. Google ScholarDigital Library
    32. Wong, T.-T., Ng, W.-Y., and Heng, P.-A. 1997. A geometry dependent texture generation framework for simulating surface imperfections. Euro. Workshop Rendering, 139–150. Google ScholarDigital Library
    33. Zhang, J., Zhou, K., Velho, L., Guo, B., and Shum, H.-Y. 2003. Synthesis of progressively-variant textures on arbitrary surfaces. ACM Trans. Graph. 22, 3 (July), 295–302. Google ScholarDigital Library
    34. Zhou, K., Wang, X., Tong, Y., Desbrun, M., Guo, B., and Shum, H.-Y. 2005. Texturemontage: Seamless texturing of arbitrary surfaces from multiple images. ACM Trans. Graph. 24, 3, 1148–1155. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: