“Anisotropic elastoplasticity for cloth, knit and hair frictional contact” by Jiang, Gast and Teran

  • ©Chenfanfu Jiang, Theodore Gast, and Joseph Teran

Conference:


Type:


Title:

    Anisotropic elastoplasticity for cloth, knit and hair frictional contact

Session/Category Title: Let's Get in Contact


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    The typical elastic surface or curve simulation method takes a Lagrangian approach and consists of three components: time integration, collision detection and collision response. The Lagrangian view is beneficial because it naturally allows for tracking of the codimensional manifold, however collision must then be detected and resolved separately. Eulerian methods are promising alternatives because collision processing is automatic and while this is effective for volumetric objects, advection of a codimensional manifold is too inaccurate in practice. We propose a novel hybrid Lagrangian/Eulerian approach that preserves the best aspects of both views. Similar to the Drucker-Prager and Mohr-Coulomb models for granular materials, we define our collision response with a novel elastoplastic constitutive model. To achieve this, we design an anisotropic hyperelastic constitutive model that separately characterizes the response to manifold strain as well as shearing and compression in the directions orthogonal to the manifold. We discretize the model with the Material Point Method and a novel codimensional Lagrangian/Eulerian update of the deformation gradient. Collision intensive scenarios with millions of degrees of freedom require only a few minutes per frame and examples with up to one million degrees of freedom run in less than thirty seconds per frame.

References:


    1. S. Ainsley, E. Vouga, E. Grinspun, and R. Tamstorf. 2012. Speculative Parallel Asynchronous Contact Mechanics. ACM Trans Graph 31, 6 (2012), 151:1–151:8.Google ScholarDigital Library
    2. K. Anjyo, Y. Usami, and T. Kurihara. 1992. A Simple Method for Extracting the Natural Beauty of Hair. SIGGRAPH Comp Graph 26, 2 (1992), 111–120. Google ScholarDigital Library
    3. Y. Bando, B. Chen, and T. Nishita. 2003. Animating hair with loosely connected particles. In Comp Graph Forum, Vol. 22. Wiley Online Library, 411–418. Google ScholarCross Ref
    4. D. Baraff and A. Witkin. 1998. Large Steps in Cloth Simulation. In Proc ACM SIGGRAPH (SIGGRAPH ’98). 43–54. Google ScholarDigital Library
    5. F. Bertails. 2009. Linear Time Super-Helices. In Comp Graph Forum, Vol. 28. Wiley Online Library, 417–426. Google ScholarCross Ref
    6. F. Bertails, B. Audoly, M. Cani, B. Querleux, F. Leroy, and J. Lévêque. 2006. Super-helices for Predicting the Dynamics of Natural Hair. ACM Trans Graph 25, 3 (2006), 1180–1187. Google ScholarDigital Library
    7. F. Bertails-Descoubes, F. Cadoux, G. Daviet, and V. Acary. 2011. A Nonsmooth Newton Solver for Capturing Exact Coulomb Friction in Fiber Assemblies. ACM Trans Graph 30, 1 (2011), 6:1–6:14.Google ScholarDigital Library
    8. J. Bonet and R. Wood. 2008. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press. Google ScholarCross Ref
    9. S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans Graph 33, 4 (2014), 154:1–154:11.Google ScholarDigital Library
    10. J. Brackbill and H. Ruppel. 1986. FLIP: A method for adaptively zoned, Particle-In-Cell calculations of fluid flows in two dimensions. J Comp Phys 65 (1986), 314–343. Google ScholarDigital Library
    11. David E. Breen, Donald H. House, and Michael J. Wozny. 1994. Predicting the Drape of Woven Cloth Using Interacting Particles. In Proc SIGGRAPH (SIGGRAPH ’94). ACM, 365–372.Google Scholar
    12. R. Bridson. 2008. Fluid simulation for computer graphics. Taylor & Francis. Google ScholarCross Ref
    13. R. Bridson, R. Fedkiw, and J. Anderson. 2002. Robust Treatment of Collisions, Contact and Friction for Cloth Animation. ACM Trans Graph 21, 3 (2002), 594–603. Google ScholarDigital Library
    14. M. Chai, C. Zheng, and K. Zhou. 2014. A Reduced Model for Interactive Hairs. ACM Trans Graph 33, 4 (2014), 124:1–124:11.Google ScholarDigital Library
    15. J. Chang, J. Jin, and Y. Yu. 2002. A Practical Model for Hair Mutual Interactions. In Proc ACM SIGGRAPH/Eurographics Symp Comp Anim. ACM, 73–80. Google ScholarDigital Library
    16. B. Choe, M. Choi, and H. Ko. 2005. Simulating Complex Hair with Robust Collision Handling. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. ACM, 153–160. Google ScholarDigital Library
    17. K. Choi and H. Ko. 2002. Stable but Responsive Cloth. ACM Trans Graph 21, 3 (2002), 604–611. Google ScholarDigital Library
    18. K. Choi and H. Ko. 2005. Advanced topics on clothing simulation and animation. In Int Conf Comp Grap Int Tech: ACM SIGGRAPH 2005 Course.Google Scholar
    19. G. Cirio, J. Lopez-Moreno, D. Miraut, and M. Otaduy. 2014. Yarn-level Simulation of Woven Cloth. ACM Trans Graph 33, 6 (2014), 207:1–207:11.Google ScholarDigital Library
    20. G. Daviet and F. Bertails-Descoubes. 2016. A Semi-implicit Material Point Method for the Continuum Simulation of Granular Materials. ACM Trans Graph 35, 4 (2016), 102:1–102:13.Google ScholarDigital Library
    21. G. Daviet, F. Bertails-Descoubes, and L. Boissieux. 2011. A Hybrid Iterative Solver for Robustly Capturing Coulomb Friction in Hair Dynamics. ACM Trans Graph 30, 6 (2011), 139:1–139:12.Google ScholarDigital Library
    22. E. de Aguiar, L. Sigal, A. Treuille, and J. Hodgins. 2010. Stable Spaces for Real-time Clothing. ACM Trans. Graph. 29, 4 (2010), 106:1–106:9.Google ScholarDigital Library
    23. A. Derouet-Jourdan, F. Bertails-Descoubes, G. Daviet, and J. Thollot. 2013. Inverse Dynamic Hair Modeling with Frictional Contact. ACM Trans Graph 32, 6 (2013), 159:1–159:10.Google ScholarDigital Library
    24. Y. Fan, J. Litven, D. Levin, and D. Pai. 2013. Eulerian-on-lagrangian Simulation. ACM Trans Graph 32, 3 (2013), 22:1–22:9.Google ScholarDigital Library
    25. Y. Fan, J. Litven, and D. Pai. 2014. Active Volumetric Musculoskeletal Systems. ACM Trans Graph 33, 4 (2014), 152:1–152:9.Google ScholarDigital Library
    26. F. Faure, J. Allard, and M. Nesme. 2007. Eulerian Contact for Versatile Collision Processing. Research Report RR-6203. INRIA. 23 pages.Google Scholar
    27. W. Feng, Y. Yu, and B. Kim. 2010. A Deformation Transformer for Real-time Cloth Animation. ACM Trans. Graph. 29, 4 (2010), 108:1–108:9.Google ScholarDigital Library
    28. T. Goktekin, A. Bargteil, and J. O’Brien. 2004. A Method for Animating Viscoelastic Fluids. ACM Trans Graph 23, 3 (2004), 463–468. Google ScholarDigital Library
    29. A. Golas, R. Narain, and M. Lin. 2014. Continuum modeling of crowd turbulence. Phys Rev E 90 (2014), 042816. Issue 4.Google ScholarCross Ref
    30. O. Gonzalez and A. Stuart. 2008. A first course in continuum mechanics. Cambridge University Press. Google ScholarCross Ref
    31. S. Hadap and N. Magnenat-Thalmann. 2001. Modeling dynamic hair as a continuum. In Comp Graph Forum, Vol. 20. Wiley Online Library, 329–338. Google ScholarCross Ref
    32. F. Harlow. 1964. The particle-in-cell method for numerical solution of problems in fluid dynamics. Meth Comp Phys 3 (1964), 319–343.Google Scholar
    33. D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun. 2009. Asynchronous Contact Mechanics. ACM Trans Graph 28, 3 (2009), 87:1–87:12.Google ScholarDigital Library
    34. D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun. 2008. Robust Treatment of Simultaneous Collisions. ACM Trans Graph 27, 3 (2008), 23:1–23:4.Google ScholarDigital Library
    35. Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017a. Anisotropic Elastoplasticity for Cloth, Knit and Hair Frictional Contact: Supplementary Technical Document. (2017).Google Scholar
    36. C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The Affine Particle-In-Cell Method. ACM Trans Graph 34, 4 (2015), 51:1–51:10.Google ScholarDigital Library
    37. Chenfanfu Jiang, Craig Schroeder, and Joseph Teran. 2017b. An angular momentum conserving affine-particle-in-cell method. J Comp Phys 338 (2017), 137 — 164. Google ScholarDigital Library
    38. J. Kaldor, D. James, and S. Marschner. 2008. Simulating Knitted Cloth at the Yarn Level. ACM Trans Graph 27, 3 (2008), 65:1–65:9.Google ScholarDigital Library
    39. J. Kaldor, D. James, and S. Marschner. 2010. Efficient Yarn-based Cloth with Adaptive Contact Linearization. ACM Trans Graph 29, 4 (2010), 105:1–105:10.Google ScholarDigital Library
    40. D. Kaufman, R. Tamstorf, B. Smith, J. Aubry, and E. Grinspun. 2014. Adaptive Nonlinearity for Collisions in Complex Rod Assemblies. ACM Trans Graph 33, 4 (2014), 123:1–123:12.Google ScholarDigital Library
    41. L. Kavan, D. Gerszewski, A. Bargteil, and P. Sloan. 2011. Physics-inspired Upsampling for Cloth Simulation in Games. ACM Trans Graph 30, 4 (2011), 93:1–93:10.Google ScholarDigital Library
    42. D. Kim, W. Koh, R. Narain, K. Fatahalian, A. Treuille, and J. O’Brien. 2013. Near-exhaustive Precomputation of Secondary Cloth Effects. ACM Trans Graph 32, 4 (2013), 87:1–87:8.Google ScholarDigital Library
    43. T. Kim and U. Neumann. 2000. A thin shell volume for modeling human hair. In Proc Comp Anim. IEEE, 104–111.Google Scholar
    44. G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-prager Elastoplasticity for Sand Animation. ACM Trans Graph 35, 4 (2016), 103:1–103:12.Google ScholarDigital Library
    45. W. Koh, R. Narain, and J. O’Brien. 2015. View-Dependent Adaptive Cloth Simulation with Buckling Compensation. IEEE Trans Vis Comp Grap 21, 10 (2015), 1138–1145. Google ScholarDigital Library
    46. Y. Lee, S. Yoon, S. Oh, D. Kim, and S. Choi. 2010. Multi-Resolution Cloth Simulation. In Comp Graph Forum, Vol. 29. 2225–2232. Google ScholarCross Ref
    47. D. Levin, J. Litven, G. Jones, S. Sueda, and D. Pai. 2011. Eulerian Solid Simulation with Contact. ACM Trans Graph 30, 4 (2011), 36:1–36:10.Google ScholarDigital Library
    48. D. Li, S. Sueda, D. Neog, and D. Pai. 2013. Thin Skin Elastodynamics. ACM Trans Graph 32, 4 (2013), 49:1–49:10.Google ScholarDigital Library
    49. H. Li, Y. Wan, and G. Ma. 2011. A CPU-GPU hybrid computing framework for real-time clothing animation. In 2011 IEEE Int Conf Cloud Comp Intel Sys. IEEE, 391–396. Google ScholarCross Ref
    50. T. Liu, A. Bargteil, J. O’Brien, and L. Kavan. 2013. Fast Simulation of Mass-Spring Systems. ACM Trans Graph 32, 6 (2013), 209:1–7.Google ScholarDigital Library
    51. M. Macklin, M. Müller, N. Chentanez, and T. Kim. 2014. Unified Particle Physics for Real-Time Applications. ACM Trans Graph 33, 4 (2014), 104.Google ScholarDigital Library
    52. A. McAdams, A. Selle, K. Ward, E. Sifakis, and J. Teran. 2009. Detail Preserving Continuum Simulation of Straight Hair. ACM Trans Graph 28, 3 (2009), 62:1–62:6.Google ScholarDigital Library
    53. R. Mindlin. 1951. Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. 18 (1951), 31–38.Google Scholar
    54. M. Müller, N. Chentanez, T. Kim, and M. Macklin. 2015. Air Meshes for Robust Collision Handling. ACM Trans. Graph. 34, 4 (2015), 133:1–133:9.Google ScholarDigital Library
    55. Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position Based Dynamics. J Vis Comm Imag Represent 18, 2 (2007), 109–118. Google ScholarDigital Library
    56. M. Müller, T. Kim, and N. Chentanez. 2012. Fast Simulation of Inextensible Hair and Fur. VRIPHYS 12 (2012), 39–44.Google Scholar
    57. R. Narain, A. Golas, S. Curtis, and M. Lin. 2009. Aggregate Dynamics for Dense Crowd Simulation. ACM Trans Graph 28, 5 (2009), 122:1–122:8.Google ScholarDigital Library
    58. R. Narain, A. Golas, and M. Lin. 2010. Free-flowing granular materials with two-way solid coupling. ACM Trans Graph 29, 6 (2010), 173:1–173:10.Google ScholarDigital Library
    59. R. Narain, A. Samii, and J. O’Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans Graph 31, 6 (2012), 152:1–152:10.Google ScholarDigital Library
    60. A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson. 2006. Physically based deformable models in computer graphics. In Comp Graph Forum, Vol. 25. Wiley Online Library, 809–836. Google ScholarCross Ref
    61. X. Ni, K. Laxmikant, and R. Tamstorf. 2015. Scalable Asynchronous Contact Mechanics Using Charm++. In IEEE 29th Int Par Dist Proc Symp. 677–687.Google Scholar
    62. M. Otaduy, R. Tamstorf, D. Steinemann, and M. Gross. 2009. Implicit Contact Handling for Deformable Objects. Comp Graph Forum 28, 2 (2009).Google Scholar
    63. L. Petrovic, M. Henne, and J. Anderson. 2005. Volumetric methods for simulation and rendering of hair. Tech Report (2005).Google Scholar
    64. X. Provot. 1997. Collision and self-collision handling in cloth model dedicated to design garments. Springer Vienna, 177–189.Google Scholar
    65. N. Schmitt, M. Knuth, J. Bender, and A. Kuijper. 2013. Multilevel Cloth Simulation using GPU Surface Sampling. VRIPHYS 13 (2013), 1–10.Google Scholar
    66. A. Selle, M. Lentine, and R. Fedkiw. 2008. A Mass Spring Model for Hair Simulation. ACM Trans Graph 27, 3 (2008), 64:1–64:11.Google ScholarDigital Library
    67. A. Selle, J. Su, G. Irving, and R. Fedkiw. 2009. Robust High-Resolution Cloth Using Parallelism, History-Based Collisions, and Accurate Friction. IEEE Trans Vis Comp Graph 15, 2 (2009), 339–350. Google ScholarDigital Library
    68. E. Sifakis, S. Marino, and J. Teran. 2008. Globally Coupled Collision Handling Using Volume Preserving Impulses. In Proc 2008 ACM SIGGRAPH/Eurographics Symp Comp Anim. 147–153.Google ScholarDigital Library
    69. A. Stomakhin, R. Howes, C. Schroeder, and J. Teran. 2012. Energetically consistent invertible elasticity. In Proc Symp Comp Anim. 25–32.Google ScholarDigital Library
    70. A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A Material Point Method for snow simulation. ACM Trans Graph 32, 4 (2013), 102:1–102:10.Google ScholarDigital Library
    71. S. Sueda, G. Jones, D. Levin, and D. Pai. 2011. Large-scale Dynamic Simulation of Highly Constrained Strands. ACM Trans Graph 30, 4 (2011), 39:1–39:10.Google ScholarDigital Library
    72. D. Sulsky, Z. Chen, and H. Schreyer. 1994. A particle method for history-dependent materials. Comp Meth App Mech Eng 118, 1 (1994), 179–196. Google ScholarCross Ref
    73. M. Tang, R. Tong, R. Narain, C. Meng, and D. Manocha. 2013. A GPU-based Streaming Algorithm for High-Resolution Cloth Simulation. Comp Graph Forum 32, 7 (2013), 21–30.Google ScholarCross Ref
    74. M. Tang, H. Wang, L. Tang, R. Tong, and D. Manocha. 2016. CAMA: Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based Cloth Simulation. Comp Graph Forum 35, 2 (2016), 511–521.Google ScholarCross Ref
    75. Y. Teng, D. Levin, and T. Kim. 2016. Eulerian Solid-fluid Coupling. ACM Trans Graph 35, 6 (2016), 200:1–200:8.Google ScholarDigital Library
    76. D. Terzopoulos and K. Fleischer. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. SIGGRAPH Comp Graph 22, 4 (1988), 269–278. Google ScholarDigital Library
    77. D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. 1987. Elastically Deformable Models. SIGGRAPH Comput Graph 21, 4 (1987), 205–214. Google ScholarDigital Library
    78. B. Thomaszewski, M. Wacker, W. Strasser, E. Lyard, C. Luible, P. Volino, M. Kasap, V. Muggeo, and N. Magnenat-Thalmann. 2007. Advanced Topics in Virtual Garment Simulation. In Eurographics 2007 – Tutorials.Google Scholar
    79. H. Wang, F. Hecht, R. Ramamoorthi, and J. O’Brien. 2010. Example-based Wrinkle Synthesis for Clothing Animation. ACM Trans. Graph. 29, 4 (2010), 107:1–107:8.Google ScholarDigital Library
    80. K. Ward, F. Bertails, T. Kim, S. Marschner, M. Cani, and M. Lin. 2007. A survey on hair modeling: Styling, simulation, and rendering. IEEE Trans Vis Comp Graph 13, 2 (2007), 213–234. Google ScholarDigital Library
    81. K. Wu and C. Yuksel. 2016. Real-time Hair Mesh Simulation. In ACM SIGGRAPH Symp Int 3D Graph Games. ACM. Google ScholarDigital Library
    82. Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a material point method for shear-dependent flows. ACM Trans Graph 34, 5 (2015), 160:1–160:20.Google ScholarDigital Library
    83. C. Yuksel, J. Kaldor, D. James, and S. Marschner. 2012. Stitch Meshes for Modeling Knitted Clothing with Yarn-level Detail. ACM Trans Graph 31, 4 (2012), 37:1–37:12.Google ScholarDigital Library
    84. Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans Graph 24, 3 (2005), 965–972. Google ScholarDigital Library
    85. J. Zurdo, J. Brito, and M. Otaduy. 2013. Animating Wrinkles by Example on Non-Skinned Cloth. IEEE Trans Vis Comp Grap 19, 1 (2013), 149–158. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: