“Anisotropic Delaunay Meshes of Surfaces” by Boissonnat, Shi, Tournois and Yvinec

  • ©Jean‐Daniel Boissonnat, Kan-Le Shi, Jane Tournois, and Mariette Yvinec




    Anisotropic Delaunay Meshes of Surfaces

Session/Category Title: Quads & Meshing




    Anisotropic simplicial meshes are triangulations with elements elongated along prescribed directions. Anisotropic meshes have been shown well suited for interpolation of functions or solving PDEs. They can also significantly enhance the accuracy of a surface representation. Given a surface S endowed with a metric tensor field, we propose a new approach to generate an anisotropic mesh that approximates S with elements shaped according to the metric field. The algorithm relies on the well-established concepts of restricted Delaunay triangulation and Delaunay refinement and comes with theoretical guarantees. The star of each vertex in the output mesh is Delaunay for the metric attached to this vertex. Each facet has a good aspect ratio with respect to the metric specified at any of its vertices. The algorithm is easy to implement. It can mesh various types of surfaces like implicit surfaces, polyhedra, or isosurfaces in 3D images. It can handle complicated geometries and topologies, and very anisotropic metric fields.


    1. P. Alliez, D. Cohen Teiner, M. Yvinec, and M. Desbrun. 2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 617–625.
    2. N. Amenta and M. Bern. 1999. Surface reconstruction by Voronoi filtering. Discr. Comput. Geom. 22, 4, 481–504.
    3. N. Amenta, S. Choi, T. K. Dey, and N. Leekha. 2002. A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geom. Appl. 12, 125–141.
    4. L. Antani, C., Delage and P. Alliez. 2008. Mesh sizing with additively weighted Voronoi diagrams. In Proceedings of the 16th International Meshing Roundtable (IMR’08). Springer, 335–346.
    5. S. Azernikov and A. Fischer. 2005. Anisotropic meshing of implicit surfaces. In Proceedings of the International Conference on Shape Modeling and Applications (SMI’05).
    6. J.-D. Boissonnat and A. Ghosh. 2010. Manifold reconstruction using tangential Delaunay complexes. In Proceedings of the 26th Annual Symposium on Computational Geometry (SCG’10). http://hal.archives-ouvertes.fr/inria-00440337/.
    7. J.-D. Boissonnat and S. Oudot. 2005. Provably good sampling and meshing of surfaces. Graph. Models 67, 405–451.
    8. J.-D. Boissonnat, C. Wormser, and M. Yvinec. 2008. Locally uniform anisotropic meshing. In Proceedings of the 24th Annual Symposium on Computational Geometry (SCG’08). ACM Press, New York, 270–277.
    9. J.-D. Boissonnat, C. Wormser, and M. Yvinec. 2011. Anisotropic Delaunay mesh generation. Tech. rep. RR-7712, INRIA. https://hal.inria.fr/file/index/docid/615486/filename/RR-7712.pdf.
    10. H. Borouchaki, P. L. George, F. Hecht, P. Laug, and E. Saltel. 1997. Delaunay mesh generation governed by metric specifications. Part I algorithms. Finite Elem. Anal. Des. 25, 1–2, 61–83.
    11. F. Bossen and P. Heckbert. 1996. A pliant method for anisotropic mesh generation. In Proceedings of the 5th International Meshing Roundtable (IMR’96).
    12. G. D. Canas and D. J. Gortler. 2011. Orphan-free anisotropic Voronoi diagrams. Discr. Comput. Geom. 46, 3.
    13. F. Cazals and M. Pouget. 2005. Estimating differential quantities using polynomial fitting of osculating jets. Comput.- Aided Geom. Des. 22, 2, 121–146.
    14. CGAL. 2014. Computational geometry algorithms library. http://www.cgal.org.
    15. S.-W. Cheng, T. K. Dey, E. A. Ramos, and R. Wenger. 2006. Anisotropic surface meshing. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’06). ACM Press, New York, 202–211.
    16. L. P. Chew. 1993. Guaranteed-quality mesh generation for curved surfaces. In Proceedings of the 9th Annual Symposium on Computational Geometry (SCG’93). ACM Press, New York, 274–280.
    17. E. F. D’azevedo, and R. B. Simpson. 1989. On optimal interpolation triangle incidences. SIAM J. Sci. Statist. Comput. 10, 6, 1063–1075.
    18. T. K. Dey and J. A. Levine. 2009. Delaunay meshing of piecewise smooth complexes without expensive predicates. Algor. 2, 4, 1327–1349.
    19. Q. Du and D. Wang. 2005. Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comput. 26, 3, 737–761.
    20. P. S. Heckbert and M. Garland. 1999. Optimal triangulation and quadric-based surface simplification. Comput. Geom. 14, 49–65.
    21. J. Hughes. 2003. Differential geometry of implicit surfaces in 3-space -A primer. Tech. rep., CS-03-05. Department of Computer Science, Brown University, Providence, R.I.
    22. X. Jiao, A. Colombi, X. Ni, and J. C. Hart. 2006. Anisotropic mesh adaptation for evolving triangulated surfaces. In Proceedings of the 15th International Meshing Roundtable (IMR’06). 173–190.
    23. F. Labelle and J. R. Shewchuk. 2003. Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation. In Proceedings of the 19th Symposium on Computational Geometry (SCG’03). ACM Press, New York, 191–200.
    24. G. Leibon and D. Letscher. 2000. Delaunay triangulations and Voronoi diagrams for riemannian manifolds. In Proceedings of the 16th Symposium on Computational Geometry (SCG’00). 341–349.
    25. B. Levy and Y. Liu. 2010. Lp centroidal Voronoi tessellation and its applications. ACM Trans. Graph. 29, 4.
    26. X.-Y. Li. 2003. Generating well-shaped d-dimensional Delaunay meshes. Theor. Comput. Sci. 296, 1, 145–165.
    27. X.-Y. Li and S.-H. Teng. 2001. Generating well-shaped Delaunay meshed in 3D. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’01). SIAM, 28–37.
    28. X.-Y. Li, S.-H. Teng, and A. Ungor. 1999. Biting ellipses to generate anisotropic mesh. In Proceedings of the 8th International Meshing Roundtable (IMR’99).
    29. J.-M. Mirebeau. 2010. Optimal meshes for finite elements of arbitrary order. Construct. Approx. 32, 2, 339–383.
    30. J. Schoen. 2008. Robust, guaranteed-quality anisotropic mesh generation. M.S. thesis, University of California, Berkeley.
    31. J. R. Shewchuk. 2002. What is a good linear finite element-? Interpolation, conditioning, anisotropy, and quality measures. http://www.cs.cmu.edu/~jrs/jrspapers.html.
    32. J. R. Shewchuk. 2005. Star splaying: An algorithm for repairing Delaunay triangulations and convex hulls. In Proceedings of the 21st Symposium on Computational Geometry (SCG’05). ACM Press, New York, 237–246.

ACM Digital Library Publication: