“Animation of Deformable Bodies with Quadratic Bézier Finite Elements” by Bargteil and Cohen
Conference:
Type(s):
Title:
- Animation of Deformable Bodies with Quadratic Bézier Finite Elements
Session/Category Title: Mesh-Based Simulation
Presenter(s)/Author(s):
Moderator(s):
Abstract:
In this article, we investigate the use of quadratic finite elements for graphical animation of deformable bodies. We consider both integrating quadratic elements with conventional linear elements to achieve a computationally efficient adaptive-degree simulation framework as well as wholly quadratic elements for the simulation of nonlinear rest shapes. In both cases, we adopt the Bézier basis functions and employ a co-rotational linear strain formulation. As with linear elements, the co-rotational formulation allows us to precompute per-element stiffness matrices, resulting in substantial computational savings. We present several examples that demonstrate the advantages of quadratic elements in general and our adaptive-degree system in particular. Furthermore, we demonstrate, for the first time in computer graphics, animations of volumetric deformable bodies with nonlinear rest shapes.
References:
- I. Babuška and M. Suri. 1990. The p- and h-p version of the finite element method: An overview. Comput. Methods Appl. Mech. Engin. 80, 1–3, 5–26.
- I. Babuška, B. A. Szabo, and I. N. Katz. 1981. The p-version of the finite element method. SIAM J. Numer. Anal. 18, 3, 515–545.
- D. Baraff and A. Witkin. 1998. Large steps in cloth simulation. In Proceedings of the Annual ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, 43–54.
- J. Barbič and D. L. James. 2005. Real-time subspace integration for st. venant-kirchoff deformable models. ACM Trans. Graph. 24, 3, 982–990.
- B. Bickel, M. Bächer, M. A. Otaduy, W. Matusik, H. Pfister, and M. Gross. 2009. Capture and modeling of nonlinear heterogeneous soft tissue. ACM Trans. Graph. 28, 3, 89:1–89:9.
- J. Bonet and R. Wood. 2008. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press.
- M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes. 2011. Isogeometric finite element data structures based on bezier extraction of nubs. Int. J. Numer. Mech. Engin. 87, 15–47.
- R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of clothing with folds and wrinkles. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 28–36.
- T. Brochu and R. Bridson. 2009. Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4, 2472–2493.
- J. Burkardt. 2007. Quadrature rules for tetrahedrons. http://people.ac.feu.edu/∼jburkardt.
- S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popović. 2002. Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21, 586–593.
- I. Chao, U. Pinkall, P. Sanan, and P. Schröder. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 4, 38:1–38:6.
- G. Debunne, M. Desbrun, M.-P. Cani, and A. H. Barr. 2001. Dynamic real-time deformations using space and time adaptive sampling. In Proceedings of the Annual ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, 31–36.
- E. Grinspun, P. Krysl, and P. Schröder. 2002. CHARMS: A simple framework for adaptive simulation. ACM Trans. Graph. 21, 3, 281–290.
- K. K. Hauser, C. Shen, and J. F. O’Brien. 2003. Interactive deformation using modal analysis with constraints. In Proceedings of the Graphics Interface Conference. 247–256.
- J. S. Hesthaven and T. Warburton. 2007. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications, 1st ed. Springer.
- T. J. R. Hughes. 1987. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs, NJ.
- G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 131–140.
- D. L. James and D. K. Pai. 2002. Dyrt: Dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. 21, 3, 582–585.
- P. Joshi, M. Meyer, T. Derose, B. Green, and T. Sanocki. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3.
- T. Ju, S. Schaefer, and J. Warren. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3, 561–566.
- J. M. Kaldor, D. L. James, and S. Marschner. 2008. Simulating knitted cloth at the yarn level. ACM Trans. Graph. 27, 3, 65:1–65:9.
- P. Kaufmann, S. Martin, M. Botsch, E. Grinspun, and M. Gross. 2009a. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28, 3, 50:1–50:10.
- P. Kaufmann, S. Martin, M. Botsch, and M. Gross. 2009b. Flexible simulation of deformable models using discontinuous galerkin fem. Graph. Models 71, 4, 153–167.
- L. Kharevych, W. Yang, Y. Tong, E. Kanso, J. E. Marsden, P. Schröder, and M. Desbrun. 2006. Geometric, variational integrators for computer animation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 43–51.
- F. Labelle and J. R. Shewchuk. 2007. Isosurface stuffing: Fast tetrahedral meshes with good dihedral angles. ACM Trans. Graph. 26, 3.
- S. Martin, P. Kaufmann, M. Botsch, M. Wicke, and M. Gross. 2008. Polyhedral finite elements using harmonic basis functions. Comput. Graph. Forum 27, 5, 1521–1529.
- J. Mezger, B. Thomaszewski, S. Pabst, and W. Strasser. 2009. Interactive physically-based shape editing. Comput.-Aid. Geom. Des. 26, 6, 680–694.
- M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler. 2002. Stable real-time deformations. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 49–54.
- M. Müller and M. Gross. 2004. Interactive virtual materials. In Proceedings of the Graphics Interface Conference. 239–246.
- J. F. O’Brien and J. K. Hodgins. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the Annual ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 137–146.
- S. Orszag. 1969. Numerical methods for the simulation of turbulence. Phys. Fluids Suppl. II 12, 250–257.
- E. G. Parker and J. F. O’Brien. 2009. Real-time deformation and fracture in a game environment. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 156–166.
- A. Patera. 1984. A spectral element method for fluid dynamics: Laminar flow in a chennel expansion. J. Comput. Phys. 54, 468–488.
- Y. Remion, J.-M. Nourrit, and D. Gillard. 1999. Dynamic animation of spline like objects. In Proceedings of the International Conference on Computer Graphics, Visualization, and Computer Vision (WSCG’99). V. Skala, Ed.
- S. H. M. Roth, M. H. Gross, S. Turello, and F. R. Carls. 1998. A bernstein-bzier based approach to soft tissue simulation. Comput. Graph. Forum 17, 3, 285–294.
- J. Schöberl. 1997. NETGEN: An advancing front 2d/3d mesh generator based on abstract rules. Comput. Vis. Sci. 1, 1, 41–52.
- E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw. 2007. Hybrid simulation of deformable solids. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 81–90.
- A. Stomakhin, R. Howes, C. Schroeder, and J. M. Teran. 2012. Energetically consistent invertible elasticity. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 25–32.
- J. Teran, S. Blemker, V. N. T. Hing, and R. Fedkiw. 2003. Finite volume methods for the simulation of skeletal muscle. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 68–74.
- D. Weber, J. Bender, M. Schnoes, A. Stork, and D. Fellner. 2013. Efficient gpu data structures and methods to solve sparse linear systems in dynamics applications. Comput. Graph. Forum 32, 1, 16–26.
- D. Weber, T. Kalbe, A. Stork, D. Fellner, and M. Goesele. 2011. Interactive deformable models with quadratic bases in bernstein-bezier-form. Trans. Vis. Comput. 27, 473–483.
- M. Wicke, M. Botsch, and M. Gross. 2007. A finite element method on convex polyhedra. Comput. Graph. Forum 26, 3, 355–364.
- C. Wojtan and G. Turk. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 47:1–47:8.
- L. Zhang, T. Cui, and H. Liu. 2009. A set of symmetric quadrature rules on triangles and tetrahedra. J. Comput. Math. 27, 1, 89–96.