“Animation Cartography – Intrinsic Reconstruction of Shape and Motion” by Tevs, Berner, Wand, Ihrke, Bokeloh, et al. …

  • ©Art Tevs, Alexander Berner, Michael Wand, Ivo Ihrke, Martin Bokeloh, Jens Kerber, and Hans-Peter Seidel

Conference:


Type:


Title:

    Animation Cartography - Intrinsic Reconstruction of Shape and Motion

Presenter(s)/Author(s):



Abstract:


    In this article, we consider the problem of animation reconstruction, that is, the reconstruction of shape and motion of a deformable object from dynamic 3D scanner data, without using user-provided template models. Unlike previous work that addressed this problem, we do not rely on locally convergent optimization but present a system that can handle fast motion, temporally disrupted input, and can correctly match objects that disappear for extended time periods in acquisition holes due to occlusion. Our approach is motivated by cartography: We first estimate a few landmark correspondences, which are extended to a dense matching and then used to reconstruct geometry and motion. We propose a number of algorithmic building blocks: a scheme for tracking landmarks in temporally coherent and incoherent data, an algorithm for robust estimation of dense correspondences under topological noise, and the integration of local matching techniques to refine the result. We describe and evaluate the individual components and propose a complete animation reconstruction pipeline based on these ideas. We evaluate our method on a number of standard benchmark datasets and show that we can obtain correct reconstructions in situations where other techniques fail completely or require additional user guidance such as a template model.

References:


    Ahmed, N., Theobalt, C., Rossl, C., Thrun, S., and Seidel, H.-P. 2008. Dense correspondence finding for parameterization-free animation reconstruction from video. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR’08). 1–8.Google Scholar
    Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: Reconstruction and parameterization from range scans. ACM Trans. Graph. 22, 3. Google ScholarDigital Library
    Anguelov, D., Srinivasan, P., Pang, H.-C., Koller, D., Thrun, S., and Davis, J. 2004. The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In Proceedings of the Conference on Neural Information Processing Systems (NIPS’04).Google Scholar
    Anuar, N. and Guskov, I. 2004. Extracting animated meshes with adaptive motion estimation. In Proceedings of the Vision, Modeling, and Visualization Workshop (VMV’04). 63–71.Google Scholar
    Bickel, B., Botsch, M., Angst, R., Matusik, W., Otaduy, M., Pfister, H., and Gross, M. 2007. Multi-Scale capture of facial geometry and motion. ACM Trans. Graph. 26, 3, 33. Google ScholarDigital Library
    Bradley, D., Heidrich, W., Popa, T., and Sheffer, A. 2010. High resolution passive facial performance capture. ACM Trans. Graph. 29, 41:1-41:10. Google ScholarDigital Library
    Bradley, D., Popa, T., Sheffer, A., Heidrich, W., and Boufekeur, T. 2008. Markerless garment capture. ACM Trans. Graph. 27, 3, 99. Google ScholarDigital Library
    Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2006. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proc. Nat. Acad. Sci. 103, 5, 1168–1172.Google ScholarCross Ref
    Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2009. Topology-Invariant similarity of nonrigid shapes. Int. J. Comput. Vis. 81, 3, 281–301. Google ScholarDigital Library
    Bronstein, A. M., Bronstein, M. M., Kimmel, R., Mahmoudi, M., and Sapiro, G. 2010. A gromov-hausdorff framework with diffusion geometry for topologically-robust nonrigid shape matching. Int. J. Comput. Vis. 89, 266–286. Google ScholarDigital Library
    Carranza, J., Theobalt, C., Magnor, M. A., and Seidel, H.-P. 2003. Free-Viewpoint video of human actors. ACM Trans. Graph. 22, 569–577. Google ScholarDigital Library
    Chang, W. and Zwicker, M. 2008. Automatic registration for articulated shapes. Comput. Graph. Forum 27, 5, 1459–1468. Google ScholarDigital Library
    Chang, W. and Zwicker, M. 2009. Range scan registration using reduced deformable models. Comput. Graph. Forum 28, 2, 447–456.Google ScholarCross Ref
    Chum, O. and Matas, J. 2005. Matching with PROSAC—Progressive sample consensus. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR’05). Vol. 1. 220–226. Google ScholarDigital Library
    Davis, J., Nehab, D., Ramamoorthi, R., and Rusinkiewicz, S. 2005. Spacetime stereo: A unifying framework for depth from triangularization. IEEE Trans. Pattern Anal. Mach. Intell. 27, 2, 296–302. Google ScholarDigital Library
    De Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P., and Thrun, S. 2008. Performance capture from sparse multi-view video. ACM Trans. Graph. 27, 3, 98. Google ScholarDigital Library
    Fang, Q., Gao, J., Guibas, L. J., de Silva, V., and Zhang, L. 2005. Glider: Gradient landmark-based distributed routing for sensor networks. In Proceedings of the 24th Conference of the IEEE Communications Society (InfoCom).Google Scholar
    Gelfand, N. and Guibas, L. J. 2004. Shape segmentation using local slippage analysis. In Proceedings of the Symposium on Geometry Processing (SGP’04). 214–223. Google ScholarDigital Library
    Häehnel, D., Thrun, S., and Burgard, W. 2003. An extension of the icp algorithm for modeling nonrigid objects with mobile robots. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 915–920. Google ScholarDigital Library
    Horn, B. K. P. 1987. Closed-Form solution of absolute orientation using unit quaternions. J. Opt. Soc. Amer. A4, 4, 629–642.Google ScholarCross Ref
    Huang, Q.-X., Adams, B., Wicke, M., and Guibas, L. J. 2008. Nonrigid registration under isometric deformations. Comput. Graph. Forum 27, 5, 1449–1457. Google ScholarDigital Library
    Huang, Q.-X., Flöry, S., Gelfand, N., Hofer, M., and Pottmann, H. 2006. Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25, 3, 569–578. Google ScholarDigital Library
    König, S. and Gumhold, S. 2008. Image-Based motion compensation for structured light scanning of dynamic scenes. Int. J. Int. Syst. Tech. Appl. 5, 3-4, 434–441. Google ScholarDigital Library
    Leordenu, M. and Hebert, M. 2005. A spectral technique for correspondence problems using pairwise constraints. In Proceedings of the International Conference on Computer Vision (ICCV’05). Vol. 2, 1482–1489. Google ScholarDigital Library
    Li, H., Adams, B., Guibas, L. J., and Pauly, M. 2009. Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5, 175. Google ScholarDigital Library
    Li, H., Sumner, R. W., and Pauly, M. 2008. Global correspondence optimization for nonrigid registration of depth scans. Comput. Graph. Forum 27, 5, 1421–1430. Google ScholarDigital Library
    Liao, M., Zhang, Q., Wang, H., Yang, R., and Gong, M. 2009. Modeling deformable objects from a single depth camera. In Proceedings of the International Conference on Computer Vision (ICCV’09).Google Scholar
    Lipman, Y. and Funkhouser, T. 2009. Möbius voting for surface correspondence. In Proceedings of the SIGGRAPH’09 Conference. ACM Press, New York, 1–12. Google ScholarDigital Library
    Lucas, B. D. and Kanade, T. 1981. An iterative image registration technique with an application to stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’81). 674–679. Google ScholarDigital Library
    Mitra, N. J., Flory, S., Ovsjanikov, M., Gelfand, N., Guibas, L., and Pottsmann, H. 2007. Dynamic geometry registration. In Proceedings of the Symposium on Geometry Processing (SGP’07). 173–182. Google ScholarDigital Library
    Ovsjanikov, M., Mérigot, Q., Mémoli, F., and Guibas, L. 2010. One point isometric matching with the heat kernel. In Proceedings of the Symposium on Geometry Processing (SGP’10). 1555–1564.Google Scholar
    Park, S. I. and Hodgins, J. K. 2006. Capturing and animating skin deformation in human motion. ACM Trans. Graph. 25, 3, 881–889. Google ScholarDigital Library
    Pekelny, Y. and Gotsman, C. 2008. Articulated object reconstruction and markerless motion capture from depth video. Comput. Graph. Forum 27, 2, 399–408.Google ScholarCross Ref
    Popa, T., South-Dickenson, I., Bradley, D., Sheffer, A., and Heidrich, W. 2010. Globally consistent space-time reconstruction. Comput. Graph. Forum 29, 5, 1633–1642.Google ScholarCross Ref
    Sand, P., McMillan, L., and Popović, J. 2003. Continuous capture of skin deformation. ACM Trans. Graph. 22, 3, 578–586. Google ScholarDigital Library
    Sharf, A., Alcantara, D. A., Lewiner, T., Greif, C., Sheffer, A., Amenta, N., and Cohen-Or, D. 2008. Space-Time surface reconstruction using incompressible flow. ACM Trans. Graph. 27, 5, 110. Google ScholarDigital Library
    Starck, J. and Hilton, A. 2007. Correspondence labeling for wide-timeframe free-form surface matching. In Proceedings of the International Conference on Computer Vision (ICCV’07). 1–8.Google Scholar
    Süssmuth, J., Winter, M., and Greiner, G. 2008. Reconstructing animated meshes from time-varying point clouds. Comput. Graph. Forum 27, 5, 1469–1476. Google ScholarDigital Library
    Tevs, A., Berner, A., Wand, M., Ihrke, I., and Seidel, H.-P. 2011. Intrinsic shape matching by planned landmark sampling. Comput. Graph. Forum 30, 543–552.Google ScholarCross Ref
    Tevs, A., Bokeloh, M., Wand, M., Schilling, A., and Seidel, H.-P. 2009. Isometric registration of ambiguous and partial data. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR’09). 1185–1192.Google Scholar
    Varanasi, K., Zaharescu, A., Boyer, E., and Horaud, R. P. 2008. Temporal surface tracking using mesh evolution. In Proceedings of the European Conference on Computer Vision (ECCV’08). 30–43. Google ScholarDigital Library
    Vlasic, D., Peers, P., Baran, I., Debevec, P., Popović, J., Rusinkiewicz, S., and Matusik, W. 2009. Dynamic shape capture using multi-view photometric stereo. ACM Trans. Graph. 28, 5, 174. Google ScholarDigital Library
    Wand, M., Adams, B., Ovsjanikov, M., Berner, A., Bokeloh, M., Jenke, P., Guibas, L., Seidel, H.-P., and Schilling, A. 2009. Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data. ACM Trans. Graph. 28, 2, 1–15. Google ScholarDigital Library
    Wand, M., Jenke, P., Huang, Q., Bokeloh, M., Guibas, L., and Schilling, A. 2007. Reconstruction of deforming geometry from time-varying point clouds. In Proceedings of the Symposium on Geometric Processing (SGP’07). 49–58. Google ScholarDigital Library
    Weise, T., Leife, B., and Gool, L. V. 2007. Fast 3D scanning with automatic motion compensation. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR’07). 1–8.Google Scholar
    Würmlin, S., Lamboray, E., Staadt, O. G., and Gross, M. H. 2002. 3D video recorder. In Proceedings of the 10th Pacific Conference on Computer Graphics and Applications (PG’02). IEEE Computer Society, Washington, DC, 325. Google ScholarDigital Library
    Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. 2004. Space-Time faces: High resolution capture for modeling and animation. ACM Trans. Graph. 23, 3, 548–558. Google ScholarDigital Library
    Zheng, Q., Sharf, A., Tagliasacchi, A., Chen, B., Zhang, H., Sheffer, A., and Cohen-Or, D. 2010. Consensus skeleton for nonrigid space-time registration. Comput. Graph. Forum 29, 2, 635–644.Google ScholarCross Ref
    Zitnick, C. L., Kang, S. B., Uyttendaele, M., Winder, S., and Szeliski, R. 2004. High-Quality video view interpolation using a layered representation. In ACM SIGGRAPH’04 Papers. ACM, New York, 600–608. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: