“Animating fluid sediment mixture in particle-laden flows” by Gao, Prandhana, Han, Guo, Kot, et al. …

  • ©Ming Gao, Andre Prandhana, Xuchen Han, Qi Guo, Grant Kot, Eftychios D. Sifakis, and Chenfanfu Jiang



Entry Number: 149

Session Title:

    Disorder Matter: From Shells to Rods and Grains


    Animating fluid sediment mixture in particle-laden flows




    In this paper, we present a mixed explicit and semi-implicit Material Point Method for simulating particle-laden flows. We develop a Multigrid Preconditioned fluid solver for the Locally Averaged Navier Stokes equation. This is discretized purely on a semi-staggered standard MPM grid. Sedimentation is modeled with the Drucker-Prager elastoplasticity flow rule, enhanced by a novel particle density estimation method for converting particles between representations of either continuum or discrete points. Fluid and sediment are two-way coupled through a momentum exchange force that can be easily resolved with two MPM background grids. We present various results to demonstrate the efficacy of our method.


    1. T.B. Anderson and R. Jackson. 1967. Fluid mechanical description of fluidized beds. Equations of motion. Ind & Eng Chem Fund 6, 4 (1967), 527–539.Google ScholarCross Ref
    2. M. Becker and M. Teschner. 2007. Weakly Compressible SPH for Free Surface Flows. In Proc ACM SIGGRAPH/Eurogmph Symp Comp Anim. 209–217. Google ScholarDigital Library
    3. M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. 2008. Discrete elastic rods. In ACM Trans Graph, Vol. 27. ACM, 63. Google ScholarDigital Library
    4. J. Brackbill and H. Ruppel. 1986. FLIP: A method for adaptively zoned, Particle-In-Cell calculations of fluid flows in two dimensions. J Comp Phys 65 (1986), 314–343. Google ScholarDigital Library
    5. R. Bridson. 2008. Fluid simulation for computer graphics. Taylor & Francis. Google ScholarDigital Library
    6. G. Daviet. 2016. Modeling and Simulating Complex Materials subject to Frictional Contact. Ph.D. Dissertation. Universite Grenoble Alpes.Google Scholar
    7. G. Daviet and F. Bertails-Descoubes. 2016. A semi-implicit material point method for the continuum simulation of granular materials. ACM Trans Graph 35, 4 (2016), 102:1–102:13. Google ScholarDigital Library
    8. R Di Felice. 1994. The voidage function for fluid-particle interaction systems. Int J Mult Flow 20, 1 (1994), 153–159.Google ScholarCross Ref
    9. S. Dunatunga and K. Kamrin. 2015. Continuum modelling and simulation of granular flows through their many phases. J Fluid Mech 779 (2015), 483–513.Google ScholarCross Ref
    10. R. Fedkiw, J. Stam, and H.W. Jensen. 2001. Visual simulation of smoke. In Proc of the 28th Ann Confon Comp Graph and Int Techs. ACM, 15–22. Google ScholarDigital Library
    11. Y.R. Fei, H.T. Maia, C. Batty, C. Zheng, and E. Grinspun. 2017. A multi-scale model for simulating liquid-hair interactions. ACM Trans Graph 36, 4 (2017), 56. Google ScholarDigital Library
    12. M. Gao, A.P. Tampubolon, C. Jiang, and E. Sifakis. 2017. An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials. ACM Trans Graph 36, 6 (2017). Google ScholarDigital Library
    13. F. Gibou, R.P. Fedkiw, LT. Cheng, and M. Kang. 2002. A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J Comp Phys 176, 1 (2002), 205–227. Google ScholarDigital Library
    14. E. Guendelman, A. Selle, F. Losasso, and R. Fedkiw. 2005. Coupling Water and Smoke to Thin Deformable and Rigid Shells. ACM Trans Graph 24, 3 (July 2005), 973–981. Google ScholarDigital Library
    15. C. Jiang, T. Gast, and J. Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans Graph 36, 4 (2017). Google ScholarDigital Library
    16. C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The affine particle-in-cell method. ACM Trans Graph 34, 4 (2015), 51:1–51:10. Google ScholarDigital Library
    17. G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-prager elastoplasticity for sand animation. ACM Trans Graph 35, 4 (2016), 103:1–103:12. Google ScholarDigital Library
    18. P. Krištof, B. Beneš, J. Křivánek, and O. Št’ava. 2009. Hydraulic erosion using smoothed particle hydrodynamics. In Comp Graph Forum, Vol. 28. Wiley Online Library, 219–228.Google Scholar
    19. T. Lenaerts, B. Adams, and P. Dutré. 2008. Porous flow in particle-based fluid simulations. ACM Trans Graph 27, 3 (2008), 49. Google ScholarDigital Library
    20. T. Lenaerts and P. Dutré. 2009. Mixing fluids and granular materials. Comp Graph Forum 28, 2 (2009), 213–218.Google ScholarCross Ref
    21. Y. Li, J. Zhang, and L.S. Fan. 1999. Numerical simulation of gas-liquid-solid fluidization systems using a combined CFD-VOF-DPM method: bubble wake behavior. Chem Eng Sci 54, 21 (1999), 5101–5107.Google ScholarCross Ref
    22. M. Macklin, M. Muller, N. Chentanez, and T. Kim. 2014. nified particle physics for real-time applications. ACM Trans Graph 33, 4 (2014), 153:1–153:12. Google ScholarDigital Library
    23. M. Manninen, V. Taivassalo, S. Kallio, et al. 1996. On the mixture model for multiphase flow.Google Scholar
    24. A. McAdams, E. Sifakis, and J. Teran. 2010. A parallel multigrid Poisson solver for fluids simulation on large grids. In Proc of the 2010 ACM SIGGRAPH/Eurograph Symp Comp Anim. Eurographics Association, 65–74. Google ScholarDigital Library
    25. M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. 2007. Position Based Dynamics. J Vis Comm Imag Repre 18, 2 (2007), 109–118. Google ScholarDigital Library
    26. M. Müller, B. Solenthaler, R. Keiser, and M. Gross. 2005. Particle-based fluid-fluid interaction. In Proc of the 2005 ACM SIGGRAPH/Eurograp Symp Comp Anim. ACM, 237–244. Google ScholarDigital Library
    27. P. Mutabaruka and K. Kamrin. 2017. A simulation technique for slurries interacting with moving parts and deformable solids with applications. arXiv preprint arXiv:1703.05158 (2017).Google Scholar
    28. R. Narain, A. Golas, and M. Lin. 2010. Free-flowing granular materials with two-way solid coupling. ACM Trans Graph 29, 6 (2010), 173:1–173:10. Google ScholarDigital Library
    29. M.B. Nielsen and O. Østerby. 2013. A two-continua approach to Eulerian simulation of water spray. ACM Trans Graph 32, 4 (2013), 67. Google ScholarDigital Library
    30. M. Pailha, M. Nicolas, and O. Pouliquen. 2008. Initiation of underwater granular avalanches: Influence of the initial volume fraction. Phys of Fluids 20, 11 (2008), 111701.Google ScholarCross Ref
    31. A. Peer, M. Ihmsen, J. Cornells, and M. Teschner. 2015. An implicit viscosity formulation for sph fluids. ACM Trans Graph 34, 4 (2015), 114. Google ScholarDigital Library
    32. A. Pradhana-Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Trans Graph 36, 4 (2017). Google ScholarDigital Library
    33. D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 157–163. Google ScholarDigital Library
    34. B. Ren, C. Li, X. Yan, M.C. Lin, J. Bonet, and S.M. Hu. 2014. Multiple-fluid SPH simulation using a mixture model. ACM Trans Graph 33, 5 (2014), 171. Google ScholarDigital Library
    35. M. Robinson and M. Ramaioli. 2011. Mesoscale fluid-particle interaction using two-way coupled SPH and the Discrete Element Method. In Proc of the 6th SPHERIC Work. 72–78.Google Scholar
    36. W. Rungjiratananon, Y. Kanamori, and T. Nishita. 2012. Wetting effects in hair simulation. In Comp Graph Forum, Vol. 31. Wiley Online Library, 1993–2002. Google ScholarDigital Library
    37. W Rungjiratananon, Z. Szego, Y. Kanamori, and T. Nishita. 2008. Real-time Animation of Sand-Water Interaction. In Comp Graph Forum, Vol. 27. Wiley Online Library, 1887–1893.Google Scholar
    38. B. Smith, D. M. Kaufman, E. Vouga, R. Tamstorf, and E. Grinspun. 2012. Reflections on Simultaneous Impact. ACM Trans Graph 31, 4, Article 106 (July 2012), 12 pages. Google ScholarDigital Library
    39. D. M. Snider. 2001. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. J Comp Phys 170, 2 (2001), 523–549. Google ScholarDigital Library
    40. A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. ACM Trans Graph 32, 4 (2013), 102:1–102:10. Google ScholarDigital Library
    41. A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Trans Graph 33, 4 (2014), 138:1–138:11. Google ScholarDigital Library
    42. D. Sulsky, S. Zhou, and H. Schreyer. 1995. Application of a particle-in-cell method to solid mechanics. Comp Phys Comm 87, 1 (1995), 236–252.Google ScholarCross Ref
    43. R. Sun and H. Xiao. 2016a. CFD-DEM simulations of current-induced dune formation and morphological evolution. Adv Water Res 92 (2016), 228–239.Google ScholarCross Ref
    44. R. Sun and H. Xiao. 2016b. SediFoam: A general-purpose, open-source CFD-DEM solver for particle-laden flow with emphasis on sediment transport. Comp & Geo 89 (2016), 207–219. Google ScholarDigital Library
    45. Y. Teng, D. Levin, and T. Kim. 2016. Eulerian Solid-fluid Coupling. ACM Trans Graph 35, 6 (2016), 200:1–200:8. Google ScholarDigital Library
    46. M.A. van der Hoef, M. Ye, M. van Sint Annaland, A.T. Andrews, S. Sundaresan, and J.A.M. Kuipers. 2006. Multiscale modeling of gas-fluidized beds. Adv Chem Eng 31 (2006), 65–149.Google ScholarCross Ref
    47. C. Wojtan, M. Carlson, P.J. Mucha, and G. Turk. 2007. Animating Corrosion and Erosion. In Eurograph Work Nat Phen. 15–22. Google ScholarDigital Library
    48. H. Xiao and J. Sun. 2011. Algorithms in a robust hybrid CFD-DEM solver for particle-laden flows. Comm Comp Phys 9, 2 (2011), 297–323.Google ScholarCross Ref
    49. B.H. Xu and A.B. Yu. 1997. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem Eng Sci 52, 16 (1997), 2785 — 2809.Google ScholarCross Ref
    50. X. Yan, Y. Jiang, C. Li, R. Martin, and S. Hu. 2016. Multiphase SPH simulation for interactive fluids and solids. ACM Trans Graph 35, 4 (2016), 79. Google ScholarDigital Library
    51. T. Yang, J. Chang, M.C. Lin, R. Martin, J. Zhang, and S.M. Hu. 2017. A Unified Particle System Framework for Multi-Phase, Multi-Material Visual Simulations. ACM Trans Graph 36, 6 (2017). Google ScholarDigital Library
    52. T. Yang, J. Chang, B. Ren, M.C. Lin, J.J. Zhang, and S.M. Hu. 2015. Fast multiple-fluid simulation using Helmholtz free energy. ACM Trans Graph 34, 6 (2015), 201. Google ScholarDigital Library
    53. Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a material point method for shear-dependent flows. ACM Trans Graph 34, 5 (2015), 160:1–160:20. Google ScholarDigital Library
    54. F. Zhang, X. Zhang, K.Y. Sze, Y. Lian, and Y. Liu. 2017. Incompressible material point method for free surface flow. J Comp Phys 330 (2017), 92–110. Google ScholarDigital Library

ACM Digital Library Publication: