“An implicit viscosity formulation for SPH fluids” by Peer, Ihmsen, Cornelis and Teschner

  • ©

Conference:


Type(s):


Title:

    An implicit viscosity formulation for SPH fluids

Presenter(s)/Author(s):



Abstract:


    We present a novel implicit formulation for highly viscous fluids simulated with Smoothed Particle Hydrodynamics SPH. Compared to explicit methods, our formulation is significantly more efficient and handles a larger range of viscosities. Differing from existing implicit formulations, our approach reconstructs the velocity field from a target velocity gradient. This gradient encodes a desired shear-rate damping and preserves the velocity divergence that is introduced by the SPH pressure solver to counteract density deviations. The target gradient ensures that pressure and viscosity computation do not interfere. Therefore, only one pressure projection step is required, which is in contrast to state-of-the-art implicit Eulerian formulations. While our model differs from true viscosity in that vorticity diffusion is not encoded in the target gradient, it nevertheless captures many of the qualitative behaviors of viscous liquids. Our formulation can easily be incorporated into complex scenarios with one- and two-way coupled solids and multiple fluid phases with different densities and viscosities.

References:


    1. Akinci, G., Ihmsen, M., Akinci, N., and Teschner, M. 2012. Parallel surface reconstruction for particle-based fluids. Computer Graphics Forum 31, 6, 1797–1809. Google ScholarDigital Library
    2. Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., and Teschner, M. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Transactions on Graphics (TOG) 31, 4, 62. Google ScholarDigital Library
    3. Akinci, N., Akinci, G., and Teschner, M. 2013. Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. 32, 6 (Nov.), 182:1–182:8. Google ScholarDigital Library
    4. Batty, C., and Bridson, R. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics symposium on computer animation, Eurographics Association, 219–228. Google ScholarDigital Library
    5. Batty, C., and Houston, B. 2011. A simple finite volume method for adaptive viscous liquids. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, 111–118. Google ScholarDigital Library
    6. Batty, C., Uribe, A., Audoly, B., and Grinspun, E. 2012. Discrete viscous sheets. ACM Transactions on Graphics (TOG) 31, 4, 113. Google ScholarDigital Library
    7. Becker, M., and Teschner, M. 2007. Weakly compressible SPH for free surface flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, 209–217. Google ScholarDigital Library
    8. Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated SPH for deformable solids. In Proceedings of the Fifth Eurographics conference on Natural Phenomena, Eurographics Association, 27–34. Google ScholarDigital Library
    9. Bender, J., Koschier, D., Charrier, P., and Weber, D. 2014. Position-based simulation of continuous materials. Computers & Graphics 44, 0, 1–10.Google ScholarDigital Library
    10. Bender, J., Müller, M., Otaduy, M. A., Teschner, M., and Macklin, M. 2014. A survey on position-based simulation methods in computer graphics. Computer Graphics Forum 33, 6, 228–251.Google ScholarDigital Library
    11. Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun, E. 2010. Discrete viscous threads. ACM Transactions on Graphics (TOG) 29, 4, 116. Google ScholarDigital Library
    12. Carlson, M., Mucha, P. J., Van Horn III, R. B., and Turk, G. 2002. Melting and flowing. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, 167–174. Google ScholarDigital Library
    13. Chang, Y., Bao, K., Liu, Y., Zhu, J., and Wu, E. 2009. A particle-based method for viscoelastic fluids animation. In Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, ACM, 111–117. Google ScholarDigital Library
    14. Chang, Y., Bao, K., Zhu, J., and Wu, E. 2011. High viscosity fluid simulation using particle-based method. In VR Innovation (ISVRI), 2011 IEEE International Symposium on, IEEE, 199–205.Google Scholar
    15. Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, 219–228. Google ScholarDigital Library
    16. Dagenais, F., Gagnon, J., and Paquette, E. 2012. A prediction-correction approach for stable SPH fluid simulation from liquid to rigid. Proceedings of the Computer Graphics International 2012.Google Scholar
    17. de Souza Andrade, L. F., Sandim, M., Petronetto, F., Pagliosa, P. A., and Paiva, A. 2014. SPH fluids for viscous jet buckling. In 27th SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2014, SBC, 65–72. Google ScholarDigital Library
    18. Desbrun, M., and Gascuel, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Proceedings of the Eurographics Workshop on Computer Animation and Simulation ’96, Springer-Verlag, Eurographics, 61–76. Google ScholarDigital Library
    19. Fält, H., and Roble, D. 2003. Fluids with extreme viscosity. In ACM SIGGRAPH 2003 Sketches & Applications, ACM, 1–1. Google ScholarDigital Library
    20. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graphical models and image processing 58, 5, 471–483. Google ScholarDigital Library
    21. Gerszewski, D., Bhattacharya, H., and Bargteil, A. W. 2009. A point-based method for animating elastoplastic solids. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, 133–138. Google ScholarDigital Library
    22. Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Transactions on Graphics (TOG) 23, 3, 463–468. Google ScholarDigital Library
    23. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Transactions on Graphics (TOG) 24, 3, 915–920. Google ScholarDigital Library
    24. Ihmsen, M., Akinci, N., Gissler, M., and Teschner, M. 2010. Boundary handling and adaptive time-stepping for PCISPH. In Proceedings VRIPHYS, VRIPHYS, 79–88.Google Scholar
    25. Ihmsen, M., Akinci, N., Becker, M., and Teschner, M. 2011. A parallel SPH implementation on multi-core CPUs. Computer Graphics Forum 30, 1, 99–112.Google ScholarCross Ref
    26. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., and Teschner, M. 2014. Implicit incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 3 (Mar.), 426–435. Google ScholarDigital Library
    27. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. 2014. SPH fluids in computer graphics. In Eurographics 2014-State of the Art Reports, The Eurographics Association, 21–42.Google Scholar
    28. Ju, T., Losasso, F., Schaefer, S., and Warren, J. 2002. Dual contouring of hermite data. ACM Transactions on Graphics (TOG) 21, 3, 339–346. Google ScholarDigital Library
    29. Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A unified Lagrangian approach to solid-fluid animation. In Point-Based Graphics, 2005. Eurographics/ IEEE VGTC Symposium Proceedings, IEEE, 125–148. Google ScholarDigital Library
    30. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Transactions on Graphics (TOG) 25, 3, 812–819. Google ScholarDigital Library
    31. Macklin, M., and Müller, M. 2013. Position based fluids. ACM Transactions on Graphics (TOG) 32, 4, 104. Google ScholarDigital Library
    32. Macklin, M., Müller, M., Chentanez, N., and Kim, T.-Y. 2014. Unified particle physics for real-time applications. ACM Transactions on Graphics (TOG) 33, 4, 104. Google ScholarDigital Library
    33. Miller, G., and Pearce, A. 1989. Globular dynamics: A connected particle system for animating viscous fluids. Computers & Graphics 13, 3, 305–309.Google ScholarCross Ref
    34. Monaghan, J. 1989. On the problem of penetration in particle methods. Journal of Computational physics 82, 1, 1–15. Google ScholarDigital Library
    35. Monaghan, J. J. 1992. Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics 30, 543–574.Google Scholar
    36. Monaghan, J. J. 2005. Smoothed particle hydrodynamics. Reports on progress in physics 68, 8, 1703.Google Scholar
    37. Mootz, E., 2014. emPolygonizer5. http://www.mootzoid.com/.Google Scholar
    38. Morris, J. P., FOX, P. J., and Zhu, Y. 1997. Modeling low reynolds number incompressible flows using SPH. Journal of computational physics 136, 1, 214–226. Google ScholarDigital Library
    39. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, 154–159. Google ScholarDigital Library
    40. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, 141–151. Google ScholarDigital Library
    41. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. In ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA, SIGGRAPH ’05, ACM, 471–478. Google ScholarDigital Library
    42. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-based fluid-fluid interaction. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, 237–244. Google ScholarDigital Library
    43. Paiva, A., Petronetto, F., Lewiner, T., and Tavares, G. 2006. Particle-based non-Newtonian fluid animation for melting objects. In Computer Graphics and Image Processing, 2006. SIBGRAPI’06. 19th Brazilian Symposium on, IEEE, 78–85.Google Scholar
    44. Paiva, A., Petronetto, F., Lewiner, T., and Tavares, G. 2009. Particle-based viscoplastic fluid/solid simulation. Computer-Aided Design 41, 4, 306–314. Google ScholarDigital Library
    45. Rafiee, A., Manzari, M., and Hosseini, M. 2007. An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows. International Journal of Non-Linear Mechanics 42, 10, 1210–1223.Google ScholarCross Ref
    46. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, 193–202. Google ScholarDigital Library
    47. Ren, B., Li, C., Yan, X., Lin, M. C., Bonet, J., and Hu, S.-M. 2014. Multiple-fluid SPH simulation using a mixture model. ACM Transactions on Graphics (TOG) 33, 5, 171. Google ScholarDigital Library
    48. Rivers, A. R., and James, D. L. 2007. Fastlsm: Fast lattice shape matching for robust real-time deformation. In ACM SIGGRAPH 2007 Papers, ACM, New York, NY, USA, SIGGRAPH ’07, ACM. Google ScholarDigital Library
    49. Schechter, H., and Bridson, R. 2012. Ghost SPH for animating water. ACM Transactions on Graphics (TOG) 31, 4, 61. Google ScholarDigital Library
    50. Side Effects Software, 2013. Houdini. http://www.sidefx.com/.Google Scholar
    51. Solenthaler, B., and Pajarola, R. 2008. Density contrast SPH interfaces. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics symposium on computer animation, Eurographics Association, 211–218. Google ScholarDigital Library
    52. Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible SPH. ACM Transactions on Graphics (TOG) 28, 3, 40. Google ScholarDigital Library
    53. Solenthaler, B., Schläfli, J., and Pajarola, R. 2007. A unified particle model for fluid–solid interactions. Computer Animation and Virtual Worlds 18, 1, 69–82. Google ScholarDigital Library
    54. Stam, J. 1999. Stable fluids. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 121–128. Google ScholarDigital Library
    55. Steele, K., Cline, D., Egbert, P. K., and Dinerstein, J. 2004. Modeling and rendering viscous liquids. Computer Animation and Virtual Worlds 15, 3–4, 183–192. Google ScholarDigital Library
    56. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A. 2013. A material point method for snow simulation. ACM Transactions on Graphics (TOG) 32, 4, 102. Google ScholarDigital Library
    57. Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., and Selle, A. 2014. Augmented MPM for phase-change and varied materials. ACM Transactions on Graphics (TOG) 33, 4, 138. Google ScholarDigital Library
    58. Stora, D., Agliati, P.-O., Cani, M.-P., Neyret, F., Gascuel, J.-D., et al. 1999. Animating lava flows. In Graphics Interface (GI’99) Proceedings, GI, 203–210. Google ScholarDigital Library
    59. Takahashi, T., Nishita, T., and Fujishiro, I. 2014. Fast simulation of viscous fluids with elasticity and thermal conductivity using position-based dynamics. Computers & Graphics 43, 0, 21–30.Google ScholarCross Ref
    60. Takahashi, T., Dobashi, Y., Fujishiro, I., Nishita, T., and Lin, M. C. 2015. Implicit formulation for SPH-based viscous fluids. Computer Graphics Forum 34, 2.Google ScholarDigital Library
    61. Takamatsu, K., and Kanai, T. 2011. A fast and practical method for animating particle-based viscoelastic fluids. International Journal of Virtual Reality 10, 1, 29.Google ScholarCross Ref
    62. Terzopoulos, D., Platt, J., and Fleischer, K. 1991. Heating and melting deformable models. The Journal of Visualization and Computer Animation 2, 2, 68–73.Google ScholarCross Ref
    63. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Transactions on Graphics (TOG) 27, 3, 47. Google ScholarDigital Library
    64. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Transactions on Graphics (TOG) 24, 3, 965–972. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: