“An algorithm with linear complexity for interactive, physically-based modeling of large proteins” by Surles

  • ©Mark C. Surles

Conference:


Type:


Title:

    An algorithm with linear complexity for interactive, physically-based modeling of large proteins

Presenter(s)/Author(s):



Abstract:


    No abstract available.

References:


    1. Akeley, K. and Jermoluk, T. High-Performance Polygon Rendering. Computer Graphics. 22, 4 (1988), 239-246.]]
    2. Bentley, J. L. and Friedman, J. H. Data Structures for Range Searching. Computing Surveys. I 1, 4 (1979), 397-409.]]
    3. Insight. Biosym Technologies Inc., 1991.]]
    4. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. and Karplus, M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. Journal of Computational Chemistry. 4, 2 (1983), 187-217.]]
    5. Duff, I. S., Erisman, A. M. and Reid, J. K. Direct Methods for Sparse Matrices. Clarendon Press, Oxford, 1986.]]
    6. Fletcher, R. Practical Methods of Optimization. John Wiley and Sons, 1987.]]
    7. Gill, P., Murray, W. and Wright, M. Practical Optimization. Academic Press, 1981.]]
    8. Hecht, M. H., Richardson, J. S., Richardson, D. C. and Ogden, R. C. De Novo Design, Expression, and Characterization of Felix: A Four-Helix Bundle Protein of Native-Like Sequence. Science. 249, 4964 (1990), 884-891.]]
    9. Hestenes, M. R. Optimization Theory, The Finite Dimensional Case. John Wiley and Sons, New York, 1975.]]
    10. Knuth, D. E. Fundamental Algorithms, The Art of Computer Programming. Addison-Wesley, 1973.]]
    11. Levinthal, C. Molecular Model-building by Computer. Scienn’fic American. 214, 6 (1966).]]
    12. Luenberger, D. G. Introduction to Linear and Nonlinear Programming. Addison-Wesley, 1973.]]
    13. Pentland, A. and Williams, J. Good Vibrations: Modal Dynamics for Graphics and Animation. Computer Graphics. 23, 3 (1989), 215-222.]]
    14. Platt, J. Constraint Methods for Neural Networks and Computer Graphics. Ph.D. Dissertation, California Institute of Technology, 1989.]]
    15. Platt, J. and Barr, A. Constraint Methods for Flexible Models. Computer Graphics. 22, 4 (1988), 279-288.]]
    16. Quanta. Polygen Corporation, 1991.]]
    17. Schulz, G. E. and Schirmer, R. H. Principles of Protein Structure. Springer-Verlag, New York, 1979.]]
    18. Stroustrup, B. The C+ + Programming Language. Addison- Wesley, 1986.]]
    19. Surles, M. Interactive Modeling Enhanced with Constraints and PhysicslWith Applications in Molecular Modeling. Symposium on Interactive 3D Graphics. 26, 2 (i 992), 175- 182.]]
    20. Surles, M. Techniques For Interactive Manipulation of Graphical Protein Models. Ph.D. Dissertation, University of North Carolina at Chapel Hill, 1992.]]
    21. Terzopoulos, D. and Fleischer, K. Modeling Inelastic Deformation: Viscoelasticity, Plasticity, Fracture. Computer Graphics. 22, 4 (1988), 269-278.]]
    22. Sybyl. Tripos Associates, 1988.]]
    23. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, C., Ghio, C., Alagona, G., Profeta, S. and Weiner, P. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. Journal of the American Chemical Society. 106, (1984), 765-784.]]
    24. Witkin, A., Gleicher, M. and Welch, W. Interactive Dynamics. Symposium on Interactive 3D Graphics. 24, 2 (1990), 11-21.]]
    25. Witkin, A. and Welch, W. Fast Animation and Control of Nonrigid Structures. Computer Graphics. 24, 4 (1990), 243- 252.]]


ACM Digital Library Publication: