“AIREAL: interactive tactile experiences in free air” by Sodhi, Poupyrev, Glisson and Israr

  • ©Rajinder Sodhi, Ivan Poupyrev, Matthew Glisson, and Ali Israr



Session Title:

    Display Hardware


    AIREAL: interactive tactile experiences in free air




    AIREAL is a novel haptic technology that delivers effective and expressive tactile sensations in free air, without requiring the user to wear a physical device. Combined with interactive computers graphics, AIREAL enables users to feel virtual 3D objects, experience free air textures and receive haptic feedback on gestures performed in free space. AIREAL relies on air vortex generation directed by an actuated flexible nozzle to provide effective tactile feedback with a 75 degrees field of view, and within an 8.5cm resolution at 1 meter. AIREAL is a scalable, inexpensive and practical free air haptic technology that can be used in a broad range of applications, including gaming, mobile applications, and gesture interaction among many others. This paper reports the details of the AIREAL design and control, experimental evaluations of the device’s performance, as well as an exploration of the application space of free air haptic displays. Although we used vortices, we believe that the results reported are generalizable and will inform the design of haptic displays based on alternative principles of free air tactile actuation.


    1. Azuma, R., Baillot, Y., Behrenger, R., Feiner, S., Julier, S. and Macintyre, B. 2001. Recent Advances in Augmented Reality. IEEE Comput. Graph. Appl. 21, 34–47. Google ScholarDigital Library
    2. Bau, O., Poupyrev, I., Israr, A. and Harrison, C. 2010. TeslaTouch: electrovibration for touch surfaces. In Proc. of UIST’10, ACM, 283–292. Google ScholarDigital Library
    3. Bau, O. and Poupyrev, I., 2012. REVEL: Tactile feedback technology for Augmented Reality. ACM Trans. Graph. 34, 1, (Aug), 89–100. Google ScholarDigital Library
    4. Bianchi, G., Knoerlein, B., Szekely, M. and Harders, M. 2006. High precision augmented reality haptics. In Proc. of EuroHaptics’06, 169–178.Google Scholar
    5. Bolanowski JR., S. J., Gesheider, G. A., Verrillo, R. T., and Checkosky, C. M. 1988. Four channels mediate the mechanical aspects of touch. Journal of ASA. 84 5, 1680–1694.Google Scholar
    6. Glezer, A. 1988. The Formation of Vortex Rings. In Physics of Fluids, 31, 3532.Google ScholarCross Ref
    7. Gharib, M., Rambod, E., and Shariff, K. 1997. A universal time scale for vortex ring formation. In Journal of Fluid Mechanics 360, 121–140.Google ScholarCross Ref
    8. Harrison, C., Tan, D., and Morris, D. 2010. Skinput: appropriating the body as an input surface. In Proc. of CHI. 453–462. Google ScholarDigital Library
    9. Hashiguchi, S., Omori, N, Yamamoto, S., Ueoka, R., and Takeda. 2012. Application to 3D Theater using a Air Pressured Facial Tactile Display. In Proc. of Asia Digital Art and Design.Google Scholar
    10. Heilig, M. 1962 Sensorama Simulator. US Patent 3050870.Google Scholar
    11. Heshan, N., Shui, Z., and Shuhei, Y. 2011. Study on the Control and Miniaturization of Tactile Display using the Air Gun. In Proc. of VR Soc. Japan. 33E-5.Google Scholar
    12. Hoshi, T., Takashami, M., Iwamoto, T., and Shinoda, H. 2010 Noncontact tactile display based on radiation pressure of Airborne Ultrasound. IEEE Trans. Haptics. 3, 155–165. Google ScholarDigital Library
    13. Israr, A., Tan, H., and Reed, C. 2006. Frequency and amplitude discrimination along the kinesthetic-cutaneous continuum in the presence of masking stimuli. Journal of ASA. 120, 2789–2800.Google ScholarCross Ref
    14. Israr, A. and Poupyrev, I. 2011. Tactile brush: Drawing on skin with a tactile grid display. In Proc. of CHI’11, ACM, 2019–2028. Google ScholarDigital Library
    15. Iwamoto, T., Tatezono, M., and Shinoda, H. 2008 Non-Contact Method for Producing Tactile Sensation Using Airborne Ultrasound, In Proc. of EuroHaptics 2008, 504–513. Google ScholarDigital Library
    16. Jones, B., Sodhi, R., Forsyth, D., Bailey, B., and Maciocci, G. 2012. Around device interaction for multiscale navigation. In Proc. of Mobile HCI. ACM 83–92. Google ScholarDigital Library
    17. Kenner, C. 2010. GlovePIE http://glovepie.orgGoogle Scholar
    18. Kruijff, E. and Pander, A. 2005. Experiences of Using Shockwaves for Haptic Sensations. In Proc. of IEEE VR 2005 Workshop on New Directions in 3D User Interfaces. 37–42Google Scholar
    19. Leapmotion. 2013. https://leapmotion.com/Google Scholar
    20. Jason, A., Marshall, M., and Subramanian, S. 2011 Adding haptic feedback to mobile TV. In Proc. of CHI 2011, ACM. 1975–1980 Google ScholarDigital Library
    21. Leek, M. R. 2001. Adaptive procedures in psychophysical research. Perception and Psychophysics 63 8, 1279–1292.Google Scholar
    22. Microsoft. 2010 Microsoft Surface 2.0Google Scholar
    23. Mosheni, K. 2002. Optimal Vortex Ring Formation at the Exit of a Shock Tube. In Proc. of American Institue of Aeronatuics and Astronautics Sciences Meeting and Exhibit.Google Scholar
    24. Poupyrev, I., Tan, D., Billinghurst, M., Kato, H., Regenbrecht, H., and Tetsutani, N. 2002. Developing a generic augmented-reality interface, IEEE Computer, 35, 44–49. Google ScholarDigital Library
    25. Poupyrev, I. and Maruyama, S. 2003. Tactile interfaces for small touch screens. In Proc. of UIST’03, ACM, 217–220. Google ScholarDigital Library
    26. Raskar R., Welch G., Cutts M., Lake M, Stesin L., and Fuchs, H. 1998. Office of the future. In Proc. SIGGRAPH ’98, ACM, 179–188. Google ScholarDigital Library
    27. Rekimoto, J. and Saitoh, M. 1999. Augmented surfaces: a spatially continuous work space for hybrid computing environments. In Proc. of CHI’99, ACM, 378–385. Google ScholarDigital Library
    28. Rice, M., Wan, M., Foo, M., Ng, J., Wai, Z., Janel, K., Samuel, L., and Linda, T. 2011 Evaluating gesture-based games with older adults on a large screen display. ACM Trans. Graph. 34, 1, (Aug) 17–24.Google Scholar
    29. Rogers, W. 1858. On the formation of rotating rings by air and liquids under certain conditions of discharge. Am. J. Sci. 26, 246–58.Google Scholar
    30. Rosenfeld, M., Rambod, E., and Gharib, M. 1998 Circulation and formation number of laminar vortex rings. In Journal of Fluid Mechanics, 376, 297–318Google ScholarCross Ref
    31. Ruiz, J., Li, Y., Lank, E. 2011 User-defined Motion Gestures for Mobile Interaction. In Proc. of CHI 2011, ACM, 197–206 Google ScholarDigital Library
    32. Russel, A. 2011 Air vortex ring communication between mobile robots. Robotics and Autonomous Systems. 59, 65–73. Google ScholarDigital Library
    33. Sodhi, R., Benko, H., and Wilson, A. 2012. Lightguide: projected visualizations for hand movement guidance. In Proc of CHI, ACM, 179–188. Google ScholarDigital Library
    34. Shariff, K. 1992 Vortex Rings. Annual Review of Fluid Mechanics. 24. 235–79.Google Scholar
    35. Sherrick, C. 1991 Vibrotactile pattern perception: some findings and applications. in The Psychology of Touch, M. Heller and W. Schiff, Editors. Lawrence Erlbaum Associates. 189–217.Google Scholar
    36. Suzuki, Y. and Kobayashi, M. 2005 Air Driven Force Feedback in Virtual Reality. Comp. Graphics and Applications. 25. 44–47. Google ScholarDigital Library
    37. Takamori, F., Tsuruyama, N., and Takeda, T. 2010. Effect of Vortext Ring using Air Canon on Sense of Touch. In Proc. of IEICE.Google Scholar
    38. Takeda, T. 2009. A Study of Air Canon for Entertainment. Master’s Thesis Kyushu Universtiy.Google Scholar
    39. Tokuda, Y., Suzuki, Y., Nishimura, K., Tanikawa, T., and Hirose, M. 2010. Cloud Display. In Proc. of ACE, 32–35. Google ScholarDigital Library
    40. Willis, K. D. D., Poupyrev, I., Hudson, S. E. and Mahler, M. 2011. SideBySide: ad-hoc multi-user interaction with handheld projectors. In Proc. of UIST’11, ACM, 431–440. Google ScholarDigital Library
    41. Wilson, A. D. and Benko, H. 2012. Steerable Augmented Reality with Beamatron. In Proc. of UIST, ACM, 413–422 Google ScholarDigital Library
    42. Yanagida, Y., Kawato, S. and Noma, H. 2004. Projection-Based Olfactory Display with Tracking. In Proc. IEEE VR 2004, 43–50. Google ScholarDigital Library

ACM Digital Library Publication: