“Adaptive tearing and cracking of thin sheets” by Pfaff, Narain and Joya

  • ©Tobias Pfaff, Rahul Narain, Juan Miguel de Joya, and James F. O'Brien

Conference:


Type:


Title:

    Adaptive tearing and cracking of thin sheets

Session/Category Title: Mesh-Based Simulation


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    This paper presents a method for adaptive fracture propagation in thin sheets. A high-quality triangle mesh is dynamically restructured to adaptively maintain detail wherever it is required by the simulation. These requirements include refining where cracks are likely to either start or advance. Refinement ensures that the stress distribution around the crack tip is well resolved, which is vital for creating highly detailed, realistic crack paths. The dynamic meshing framework allows subsequent coarsening once areas are no longer likely to produce cracking. This coarsening allows efficient simulation by reducing the total number of active nodes and by preventing the formation of thin slivers around the crack path. A local reprojection scheme and a substepping fracture process help to ensure stability and prevent a loss of plasticity during remeshing. By including bending and stretching plasticity models, the method is able to simulate a large range of materials with very different fracture behaviors.

References:


    1. Ando, R., Thürey, N., and Wojtan, C. 2013. Highly adaptive liquid simulations on tetrahedral meshes. ACM Trans. Graph. (Proc. SIGGRAPH 2013) (July). Google ScholarDigital Library
    2. Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. IEEE transactions on visualization and computer graphics 13, 2 (Jan.), 370–8. Google ScholarDigital Library
    3. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Transactions on Graphics 26, 3 (July), 16. Google ScholarDigital Library
    4. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (July), 594–603. Google ScholarDigital Library
    5. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’03, 28–36. Google ScholarDigital Library
    6. Busaryev, O., Dey, T. K., and Wang, H. 2013. Adaptive fracture simulation of multi-layered thin plates. ACM Transactions on Graphics 32, 4 (July), 1. Google ScholarDigital Library
    7. Chentanez, N., Feldman, B. E., Labelle, F., O’Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2007, 219–228. Google ScholarDigital Library
    8. Clausen, P., Wicke, M., Shewchuk, J. R., and O’Brien, J. F. 2013. Simulating liquids and solid-liquid interactions with lagrangian meshes. ACM Transactions on Graphics 32, 2 (Apr.), 1–15. Google ScholarDigital Library
    9. Gingold, Y., Secord, A., Han, J. Y., Grinspun, E., and Zorin, D. 2004. A Discrete Model for Inelastic Deformation of Thin Shells. In ACM Symposium on Computer Animation. Google ScholarDigital Library
    10. Glondu, L., Muguercia, L., Marchal, M., Bosch, C., Rushmeier, H., Dumont, G., and Drettakis, G. 2012. Example-Based Fractured Appearance. Computer Graphics Forum 31, 4 (June), 1547–1556. Google ScholarDigital Library
    11. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proc. 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’03, 62–67. Google ScholarDigital Library
    12. Harmon, D., Vouga, E., Tamstorf, R., and Grinspun, E. 2008. Robust treatment of simultaneous collisions. ACM Trans. Graph. 27, 3 (Aug.), 23:1–23:4. Google ScholarDigital Library
    13. Hutchinson, D., Preston, M., and Hewitt, T. 1996. Adaptive refinement for mass/spring simulations. In 7th Eurographics Workshop on Animation and Simulation, Springer-Verlag, 31–45. Google ScholarDigital Library
    14. Iben, H. N., and O’Brien, J. F. 2006. Generating surface crack patterns. ACM Symposium on Computer Animation (Sept.), 177–185. Google ScholarDigital Library
    15. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Transactions on Graphics 28, 3 (July), 1. Google ScholarDigital Library
    16. Klingner, B. M., Feldman, B. E., Chentanez, N., and O’Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. 25, 3 (July), 820–825. Google ScholarDigital Library
    17. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Transactions on Graphics, 23 (July), 385—-392. Google ScholarDigital Library
    18. Müller, M., Chentanez, N., and Kim, T.-Y. 2013. Real time dynamic fracture with volumetric approximate convex decompositions. ACM Transactions on Graphics 32, 4 (July), 1. Google ScholarDigital Library
    19. Narain, R., Samii, A., and O’Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Transactions on Graphics 31, 6 (Nov.), 1. Google ScholarDigital Library
    20. Narain, R., Pfaff, T., and O’Brien, J. F. 2013. Folding and crumpling adaptive sheets. ACM Trans. Graph. 32, 4, 51:1–51:8. Google ScholarDigital Library
    21. Norton, A., Turk, G., Bacon, B., Gerth, J., and Sweeney, P. 1991. Animation of fracture by physical modeling. The Visual Computer 7, 4, 210–219. Google ScholarDigital Library
    22. O’Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques – SIGGRAPH ’99, ACM Press, New York, New York, USA, 137–146. Google ScholarDigital Library
    23. O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3 (July), 291–294. Google ScholarDigital Library
    24. O’Brien, J. F. 2000. Graphical Modeling and Animation of Fracture.Google Scholar
    25. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless Animation of Fracturing Solids. ACM transactions on graphics 24, 3 (July), 957–964. Google ScholarDigital Library
    26. Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary cutting of deformable tetrahedralized objects. In ACM Symposium on Computer Animation, Eurographics Association, 73–80. Google ScholarDigital Library
    27. Simnett, T. J. R., Laycock, S. D., and Day, A. M. 2009. An Edge-based Approach to Adaptively Refining a Mesh for Cloth Deformation. In Eurographics UK Theory and Practice of Computer Graphics, 77–84. Google ScholarDigital Library
    28. Su, J., Schroeder, C., and Fedkiw, R. 2009. Energy stability and fracture for frame rate rigid body simulations. In ACM Symposium on Computer Animation, ACM Press, New York, New York, USA, 155. Google ScholarDigital Library
    29. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In Proc. SIGGRAPH ’88, 269–278. Google ScholarDigital Library
    30. Wang, H., O’Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth. ACM Transactions on Graphics 30, 4 (July), 1. Google ScholarDigital Library
    31. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29 (July), 49:1–49:11. Google ScholarDigital Library
    32. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Transactions on Graphics 29, 4 (July), 1–11. Google ScholarDigital Library
    33. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3 (Aug.), 47:1–47:8. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: