“Adaptive Progressive Photon Mapping” by Kaplanyan and Dachsbacher

  • ©Anton S. Kaplanyan and Carsten Dachsbacher

Conference:


Type:


Title:

    Adaptive Progressive Photon Mapping

Session/Category Title:   Global Illumination


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    This article introduces a novel locally adaptive progressive photon mapping technique which optimally balances noise and bias in rendered images to minimize the overall error. It is the result of an analysis of the radiance estimation in progressive photon mapping. As a first step, we establish a connection to the field of recursive estimation and regression in statistics and derive the optimal estimation parameters for the asymptotic convergence of existing approaches. Next, we show how to reformulate photon mapping as a spatial regression in the measurement equation of light transport. This reformulation allows us to derive a novel data-driven bandwidth selection technique for estimating a pixel’s measurement. The proposed technique possesses attractive convergence properties with finite numbers of samples, which is important for progressive rendering, and it also provides better results for quasi-converged images. Our results show the practical benefits of using our adaptive method.

References:


    1. Belcour, L. and Soler, C. 2011. Frequency-Based kernel estimation for progressive photon mapping. In ACM SIGGRAPH Asia Poster Program.
    2. Cortes, C. and Vapnik, V. 1995. Support-Vector networks. Mach. Learn. 20, 3, 273–297.
    3. Donoho, D., Johnstone, I., and Johnstone, I. M. 1993. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455.
    4. Georgiev, I., Krivanek, J., and Slusallek, P. 2011. Boidirectional light transport with vertex merging. In SIGGRAPH Asia Sketches. Vol. 27, 27:1–27:2.
    5. Hachisuka, T., Jarosz, W., and Jensen, H. W. 2010. A progressive error estimation framework for photon density estimation. ACM Trans. Graph. 29, 6, 144:1–144:12.
    6. Hachisuka, T. and Jensen, H. W. 2009. Stochastic progressive photon mapping. ACM Trans. Graph. 28, 5, 141:1–141:8.
    7. Hachisuka, T. and Jensen, H. W. 2011. Robust adaptive photon tracing using photon path visibility. ACM Trans. Graph. 30, 5, 114:1–114:11.
    8. Hachisuka, T. Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Trans. Graph. 27, 5, 130:1–130:8.
    9. Hackisuka, T., Pantaleoni, J., and Jensen, H. W. 2012. A path space extension for robust light transport simulation. ACM Trans. Graph. 31.
    10. Hall, P. and Patil, P. 1994. On the efficiency of on-line density estimators. IEEE Trans. Inf. Theory 40, 5, 1504–1512.
    11. Havran, V., Bittner, J., Herzog, R., and Seidel, H.-P. 2005. Ray maps for global illumination. In Proceedings of the Eurographics Symposium on Rendering Techniques. 43–54, 311.
    12. Jakob, W., Regg, C., and Jarosz, W. 2011. Progressive expectation maximization for hierarchical volumetric photon mapping. Comput. Graph. Forum 30, 4.
    13. Jarosz, W., Nowrouzezahrai, D., Thomas, R., Sloan, P.-P., and Zwicker, M. 2011. Progressive photon beams. ACM Trans. Graph. 30, 6.
    14. Jensen, H. W. 1996. Global illumination using photon maps. In Proceedings of the Eurographics Workshop on Rendering Techniques. 21–30.
    15. Jones, M. C., Marron, J. S., and Sheather, S. J. 1996. A brief survey of bandwidth selection for density estimation. J. Amer. Statist. Assoc. 91, 433, 401–407.
    16. Jones, M. C. and Sheather, S. J. 1991. Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statist. Probab. Lett. 11, 6, 511–514.
    17. Katkovnik, V. and Shmulevich, I. 2002. Kernel density estimation with adaptive varying window size. Pattern Recogn. Lett. 23, 14, 1641–1648.
    18. Knaus, C. and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Trans. Graph. 30, 3, 25:1–25:13.
    19. Lafortune, E. P. and Willems, Y. D. 1993. Bi-Directional path tracing. In Proceedings of the 3rd International Conference on Computational Graphics and Visualization Techniques (COMPUGRAPHICS). 145–153.
    20. Mitchell, D. and Hanrahan, P. 1992. Illumination from curved reflectors. ACM Trans. Graph. 26, 2, 283–291.
    21. Myszkowski, K. 1997. Lighting reconstruction using fast and adaptive density estimation techniques. In Proceedings of the Eurographics Workshop on Rendering Techniques. 251–262.
    22. Ngerng, M. H. 2011. Recursive nonparametric estimation of local first derivative under dependence conditions. Comm. Statist. Theory Methods 40, 7, 1159–1168.
    23. Park, B. U. and Marron, J. S. 1990. Comparison of data-driven bandwidth selectors. J. Amer. Statist. Assoc. 85, 409, 66–72.
    24. Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. 2010. Optix: A general purpose ray tracing engine. ACM Trans. Graph. 29, 4, 66:1–66:13.
    25. Parzen, E. 1962. On estimation of a probability density function and mode. Ann. Math. Statist. 33, 3, 1065–1076.
    26. Perlin, K. 2002. Improving noise. ACM Trans. Graph. 21, 3, 681–682.
    27. Pharr, M. and Humphreys, G. 2010. Physically Based Rendering: From Theory to Implementation 2nd Ed. Morgan Kaufmann, San Fransisco, CA.
    28. Reif, J. H., Tygar, J. D., and Yoshida, A. 1994. Computability and complexity of ray tracing. Discr. Comput. Geom. 11, 1, 265–288.
    29. Rousselle, F., Knaus, C., and Zwicker, M. 2011. Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6, 159:1–159:12.
    30. Rudemo, M. 1982. Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9, 2, 65–78.
    31. Schjoth, L. 2009. Anisotropic density estimation in global illumination. Ph.D. thesis, University of Copenhagen.
    32. Schregle, R. 2003. Bias compensation for photon maps. Comput. Graph. Forum 22, 4, 729–742.
    33. Katkovnik, V. and Shmulevich, I. 2002. Kernel density estimation with adaptive varying window size. Patt. Recog. Lett. 23, 14, 1641–1648.
    34. Knaus, C. and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Trans. Graph. 30, 3, 25:1–25:13.
    35. Lafortune, E. P. and Willems, Y. D. 1993. Bi-Directional path tracing. In Proceedings of the 3rd International Conference on Computational Graphics and Visualization Techniques (COMPUGRAPHICS’93). 145–153.
    36. Mitchell, D. and Hanrahan, P. 1992. Illumination from curved reflectors. SIGGRAPH Comput. Graph. 26, 2, 283–291.
    37. Myszkowski, K. 1997. Lighting reconstruction using flat and adaptive density estimation techniques. In Proceedings of the Eurographics Workshop on Rendering Techniques. 251–262.
    38. Ngerng, M. H. 2011. Recursive nonparametric estimation of local first derivative under dependence conditions. Comm. Statist. Theory Methods 40, 7, 1159–1168.
    39. Park, B. U. and Marron, J. S. 1990. Comparison of data-driven bandwidth selectors. J. Amer. Statist. Assoc. 85, 409, 66–72.
    40. Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. 2010. Optix: A general purpose ray tracing engine. ACM Trans. Graph. 29, 4, 66:1–66:13.
    41. Parzen, E. 1962. On estimation of a probability density function and mode. Ann. Math. Statist. 33, 3, 1065–1076.
    42. Perlin, K. 2002. Improving noise. ACM Trans. Graph. 21, 3, 681–682.
    43. Pharr, M. and Humphreys, G. 2010. Physically Based Rendering: From Theory to Implementation 2nd Ed. Morgan Kaufmann, San Fransisco, CA.
    44. Reif, J. H., Tygar, J. D., and Yoshida, A. 1994. Computability and complexity of ray tracing. Discr. Comput. Geom. 11, 1, 265–288.
    45. Rousselle, F., Knaus, C., and Zwicker, M. 2011. Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6, 159:1–159:12.
    46. Rudemo, M. 1982. Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9, 2, 65–78.
    47. Schjoth, L. 2009. Anisotropic density estimation in global illumination. Ph.D. thesis, University of Copenhagen.
    48. Schregle, R. 2003. Bias compensation for photon maps. Comput. Graph. Forum 22, 4, 729–742.
    49. Sheather, S. J. and Jones, M. C. 1991. A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Statist. Soc. B53, 3, 683–690.
    50. Shirley, P., Wade, B., Hubbard, P. M., Zareski, D., Walter, B., and Greenberg, D. P. 1995. Global illumination via density-estimation. In Proceedings of the 6th Workshop on Rendering. 219–230.
    51. Silverman, B. 1986. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman and Hall.
    52. Spencer, B. and Jones, M. W. 2009. Into the blue: Better caustics through photon relaxation. Comput. Graph. Forum 28, 2, 319–328.
    53. Suykens, F. and Willems, Y. D. 2000. Density control for photon maps. In Proceedings of the Eurographics Workshop on Rendering Techniques. 23–34.
    54. van Eeden, C. 1985. Mean integrated squared error of kernel estimators when the density and its derivative are not necessarily continuous. Ann. Inst. Statist. Math. 37, 1, 461–472.
    55. Veach, E. 1998. Robust monte carlo methods for light transport simulation. Ph.D. thesis, Stanford University. AA19837162.
    56. Veach, E. and Guibas, L. 1994. Bidirectional estimators for light transport. In Proceedings of the Eurographics Rendering Workshop. 147–162.
    57. Vorba, J. 2011. Bidirectional photon mapping. In Proceedings of the 15th Central European Seminar on Computer Graphics. 25–32.
    58. Walter, B. J. 1998. Density estimation techniques for global illumination. Ph.D. thesis, AA19900037, Cornell University, Ithaca, NY.
    59. Wand, M. P. and Jones, M. C. 1994. Multivariate plug-in bandwidth selection. Comput. Statist. 9, 97–116.
    60. Wolverton, C. and Wagner, T. 1969. Recursive estimates of probability densities. IEEE Trans. Syst. Sci. Cybernet. 5, 3, 246–247.
    61. Wong, K. W. and Wang, W. 2005. Adaptive density estimation using an orthogonal series for global illumination. Comput. Graph. 29, 5, 738–755.
    62. Yamato, H. 1971. Sequential estimation of a continuous probability density function and mode. Bull. Math. Statist. 14, 1–12.

ACM Digital Library Publication:



Overview Page: