“Adaptive fracture simulation of multi-layered thin plates” by Busaryev, Dey and Wang

  • ©Oleksiy Busaryev, Tamal K. Dey, and Huamin Wang

Conference:


Type:


Title:

    Adaptive fracture simulation of multi-layered thin plates

Session/Category Title: Rods & Shells


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    The fractures of thin plates often exhibit complex physical behaviors in the real world. In particular, fractures caused by tearing are different from fractures caused by in-plane motions. In this paper, we study how to make thin-plate fracture animations more realistic from three perspectives. We propose a stress relaxation method, which is applied to avoid shattering artifacts after generating each fracture cut. We formulate a fracture-aware remeshing scheme based on constrained Delaunay triangulation, to adaptively provide more fracture details. Finally, we use our multi-layered model to simulate complex fracture behaviors across thin layers. Our experiment shows that the system can efficiently and realistically simulate the fractures of multi-layered thin plates.

References:


    1. Alava, M., and Niskanen, K. 2006. The physics of paper. Reports on Progress in Physics 69, 3, 669.Google ScholarCross Ref
    2. Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. IEEE Transactions on Visualization and Computer Graphics 13, 2 (Mar.), 370–378. Google ScholarDigital Library
    3. Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., and Grinspun, E. 2006. A quadratic bending model for inextensible surfaces. In Proc. of SGP, 227–230. Google ScholarDigital Library
    4. Boux de Casson, F., and Laugier, C. 2000. Simulating 2d tearing phenomena for interactive medical surgery simulators. In Proc. of the Computer Animation, 9–. Google ScholarDigital Library
    5. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July), 594–603. Google ScholarDigital Library
    6. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. of SCA, 28–36. Google ScholarDigital Library
    7. CGAL, 2013. Computational Geometry Algorithms Library. http://www.cgal.org.Google Scholar
    8. Cheng, S.-W., Dey, T. K., and Shewchuk, J. R. 2012. Delaunay Mesh Generation. CRC Press, Boca Raton, Florida. Google ScholarDigital Library
    9. Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July), 604–611. Google ScholarDigital Library
    10. Etzmuß, O., Keckeisen, M., and Straßer, W. 2003. A fast finite element solution for cloth modelling. In Proc. of Pacific Graphics, 244–. Google ScholarDigital Library
    11. Garg, A., Grinspun, E., Wardetzky, M., and Zorin, D. 2007. Cubic shells. In Proc. of SCA, 91–98. Google ScholarDigital Library
    12. Gingold, Y., Secord, A., Han, J. Y., Grinspun, E., and Zorin, D. 2004. A discrete model for inelastic deformation of thin shells. Tech. rep., Aug.Google Scholar
    13. Grinspun, E., Krysl, P., and Schröder, P. 2002. Charms: a simple framework for adaptive simulation. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July), 281–290. Google ScholarDigital Library
    14. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proc. of SCA, 62–67. Google ScholarDigital Library
    15. Guo, X., Li, X., Bao, Y., Gu, X., and Qin, H. 2006. Meshless thin-shell simulation based on global conformal parameterization. IEEE Transactions on Visualization and Computer Graphics 12, 3 (May), 375–385. Google ScholarDigital Library
    16. Iben, H. N., and O’Brien, J. F. 2006. Generating surface crack patterns. In Proc. of SCA, 177–185. Google ScholarDigital Library
    17. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. (SIGGRAPH) 28, 3 (July), 50:1–50:10. Google ScholarDigital Library
    18. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., and Gross, M. 2008. Polyhedral finite elements using harmonic basis functions. In Proc. of SGP, 1521–1529. Google ScholarDigital Library
    19. Muller, M. 2008. Hierarchical position based dynamics. In VRIPHYS, 1–10.Google Scholar
    20. Narain, R., Samii, A., and O’Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6 (Nov.), 152:1–152:10. Google ScholarDigital Library
    21. Narain, R., Pfaff, T., and O’Brien, J. F. 2013. Folding and crumpling adaptive sheets. ACM Trans. Graph. (SIGGRAPH). Google ScholarDigital Library
    22. O’Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proc. of SIGGRAPH 98, Annual Conference Series, 137–146. Google ScholarDigital Library
    23. O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July), 291–294. Google ScholarDigital Library
    24. O’Brien, J. F. 2003. Graphical Modeling and Animation of Brittle Fracture. PhD thesis, Georgia Institute of Technology, Atlanta, GA.Google Scholar
    25. Parker, E. G., and O’Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In Proc. of SCA, 165–175. Google ScholarDigital Library
    26. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. (SIGGRAPH) 24, 3 (July), 957–964. Google ScholarDigital Library
    27. Provot, X. 1996. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In Proc. of Graphics Interface, 147–154.Google Scholar
    28. Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary cutting of deformable tetrahedralized objects. In Proc. of SCA, 73–80. Google ScholarDigital Library
    29. Steinemann, D., Otaduy, M. A., and Gross, M. 2006. Fast arbitrary splitting of deforming objects. In Proc. of SCA, 63–72. Google ScholarDigital Library
    30. Su, J., Schroeder, C., and Fedkiw, R. 2009. Energy stability and fracture for frame rate rigid body simulations. In Proc. of SCA, 155–164. Google ScholarDigital Library
    31. Volino, P., and Magnenat-Thalmann, N. 2006. Simple linear bending stiffness in particle systems. In Proc. of SCA, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 101–105. Google ScholarDigital Library
    32. Volino, P., Magnenat-Thalmann, N., and Faure, F. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28, 4 (Sept.), 105:1–105:16. Google ScholarDigital Library
    33. Wang, H., O’Brien, J., and Ramamoorthi, R. 2010. Multi-resolution isotropic strain limiting. ACM Trans. Graph. (SIGGRAPH Asia) 29, 6 (Dec.), 156:1–156:10. Google ScholarDigital Library
    34. Wang, H., O’Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth: Modeling and measurement. ACM Trans. Graph. (SIGGRAPH) 30, 4 (July), 71:1–71:12. Google ScholarDigital Library
    35. Wicke, M., Steinemann, D., and Gross, M. H. 2005. Efficient animation of point-sampled thin shells. Computer Graphics Forum (Eurographics) 24, 3, 667C–676.Google ScholarCross Ref
    36. Wicke, M., Botsch, M., and Gross, M. 2007. A finite element method on convex polyhedra. Computer Graphics Forum (Eurographics) 26, 3, 355C–364.Google ScholarCross Ref
    37. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29 (July), 49:1–49:11. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: