“Acoustic voxels: computational optimization of modular acoustic filters”

  • ©Dingzeyu Li, Changxi Zheng, David I. W. Levin, and Wojciech Matusik

Conference:


Type(s):


Title:

    Acoustic voxels: computational optimization of modular acoustic filters

Session/Category Title:   COMPUTATIONAL DESIGN OF STRUCTURES, SHAPES, AND SOUND


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Acoustic filters have a wide range of applications, yet customizing them with desired properties is difficult. Motivated by recent progress in additive manufacturing that allows for fast prototyping of complex shapes, we present a computational approach that automates the design of acoustic filters with complex geometries. In our approach, we construct an acoustic filter comprised of a set of parameterized shape primitives, whose transmission matrices can be precomputed. Using an efficient method of simulating the transmission matrix of an assembly built from these underlying primitives, our method is able to optimize both the arrangement and the parameters of the acoustic shape primitives in order to satisfy target acoustic properties of the filter. We validate our results against industrial laboratory measurements and high-quality off-line simulations. We demonstrate that our method enables a wide range of applications including muffler design, musical wind instrument prototyping, and encoding imperceptible acoustic information into everyday objects.

References:


    1. Allen, A., and Raghuvanshi, N. 2015. Aerophones in flatland: Interactive wave simulation of wind instruments. ACM Trans. Graph. 34, 4 (July). Google ScholarDigital Library
    2. Angell, T., Jiang, X., and Kleinman, R. 1997. A distributed source method for inverse acoustic scattering. Inverse Problems 13, 2, 531.Google ScholarCross Ref
    3. Aubry, J.-P. 2013. Beginning with Code_Aster. Framasoft.Google Scholar
    4. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. ACM Trans. Graph. 28, 3 (July). Google ScholarDigital Library
    5. Bharaj, G., Levin, D. I. W., Tompkin, J., Fei, Y., Pfister, H., Matusik, W., and Zheng, C. 2015. Computational design of metallophone contact sounds. ACM Trans. Graph. 34, 6 (Oct.). Google ScholarDigital Library
    6. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4 (July). Google ScholarDigital Library
    7. Braden, A. C., Newton, M. J., and Campbell, D. M. 2009. Trombone bore optimization based on input impedance targets. The Journal of the Acoustical Society of America 125, 4.Google ScholarCross Ref
    8. Caloz, C., and Itoh, T. 2005. Electromagnetic metamaterials: transmission line theory and microwave applications. John Wiley & Sons.Google Scholar
    9. Chiu, M.-C. 2010. Shape optimization of multi-chamber mufflers with plug-inlet tube on a venting process by genetic algorithms. Applied Acoustics 71, 6, 495–505.Google ScholarCross Ref
    10. Christopoulos, C. 2006. The Transmission-Line Modeling (TLM) Method in Electromagnetics. Morgan & Claypool Publishers.Google Scholar
    11. De Lima, K. F., Lenzi, A., and Barbieri, R. 2011. The study of reactive silencers by shape and parametric optimization techniques. Applied Acoustics 72, 4, 142–150.Google ScholarCross Ref
    12. Dokmanić, I., Parhizkar, R., Walther, A., Lu, Y. M., and Vetterli, M. 2013. Acoustic echoes reveal room shape. Proceedings of the National Academy of Sciences 110, 30.Google ScholarCross Ref
    13. Feijóo, G. R., Oberai, A. A., and Pinsky, P. M. 2004. An application of shape optimization in the solution of inverse acoustic scattering problems. Inverse problems 20, 1, 199.Google Scholar
    14. Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M., and West, J. 1998. A beam tracing approach to acoustic modeling for interactive virtual environments. In Proc. of SIGGRAPH 98. Google ScholarDigital Library
    15. Funkhouser, T. A., Min, P., and Carlbom, I. 1999. Realtime acoustic modeling for distributed virtual environments. In Proc. of SIGGRAPH 99. Google ScholarDigital Library
    16. Hämäläinen, P., Eriksson, S., Tanskanen, E., Kyrki, V., and Lehtinen, J. 2014. Online motion synthesis using sequential monte carlo. ACM Trans. Graph. 33, 4 (July). Google ScholarDigital Library
    17. Ingard, U. 2009. Noise reduction analysis. Jones & Bartlett Publishers.Google Scholar
    18. James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed acoustic transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Trans. Graph. 25, 3 (July). Google ScholarDigital Library
    19. Kac, M. 1966. Can one hear the shape of a drum? American Mathematical Monthly, 1–23.Google Scholar
    20. Kausel, W. 2001. Optimization of brasswind instruments and its application in bore reconstruction. Journal of New Music Research 30, 1, 69–82.Google ScholarCross Ref
    21. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. 1983. Optimization by simulated annealing. Science 220, 4598, 671–680.Google Scholar
    22. Laput, G., Brockmeyer, E., Hudson, S. E., and Harrison, C. 2015. Acoustruments: Passive, acoustically-driven, interactive controls for handheld devices. In Proc. CHI 2015, ACM. Google ScholarDigital Library
    23. Li, D., Fei, Y., and Zheng, C. 2015. Interactive acoustic transfer approximation for modal sound. ACM Trans. Graph. 35, 1 (Dec.). Google ScholarDigital Library
    24. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. 23, 3 (Aug.). Google ScholarDigital Library
    25. Mehra, R., Raghuvanshi, N., Antani, L., Chandak, A., Curtis, S., and Manocha, D. 2013. Wave-based sound propagation in large open scenes using an equivalent source formulation. ACM Trans. Graph. 32, 2 (Apr.). Google ScholarDigital Library
    26. Miguez, J., Crisan, D., and Djuric, P. M. 2010. Sequential monte carlo methods for the optimization of a general class of objective functions. SIAM Journal on Optimization.Google Scholar
    27. Monks, M., Oh, B. M., and Dorsey, J. 2000. Audioptimiza-tion: goal-based acoustic design. Computer Graphics and Applications, IEEE 20, 3, 76–90. Google ScholarDigital Library
    28. Munjal, M. 2014. Acoustics of Ducts and Mufflers, second ed. John Wiley & Sons.Google Scholar
    29. Noreland, J. D., Udawalpola, M. R., and Berggren, O. M. 2010. A hybrid scheme for bore design optimization of a brass instrument. Journal of the Acoustical Society of America 128, 3, 1391–1400.Google ScholarCross Ref
    30. Panetta, J., Zhou, Q., Malomo, L., Pietroni, N., Cignoni, P., and Zorin, D. 2015. Elastic textures for additive fabrication. ACM Trans. Graph. 34, 4 (July). Google ScholarDigital Library
    31. Pegoraro, V., Wald, I., and Parker, S. G. 2008. Sequential monte carlo adaptation in low-anisotropy participating media. In Computer Graphics Forum, vol. 27, Wiley Online Library. Google ScholarDigital Library
    32. Pierce, A. D., et al. 1991. Acoustics: an introduction to its physical principles and applications. Acoustical Society of America Melville, NY.Google Scholar
    33. Raghuvanshi, N., and Snyder, J. 2014. Parametric wave field coding for precomputed sound propagation. ACM Trans. Graph. 33, 4 (July). Google ScholarDigital Library
    34. Raghuvanshi, N., Snyder, J., Mehra, R., Lin, M., and Govindaraju, N. 2010. Precomputed wave simulation for realtime sound propagation of dynamic sources in complex scenes. ACM Trans. Graph. 29, 4 (July). Google ScholarDigital Library
    35. Rienstra, S. W., and Hirschberg, A. 2003. An introduction to acoustics. Eindhoven University of Technology 18, 19.Google Scholar
    36. Ritchie, D., Mildenhall, B., Goodman, N. D., and Hanrahan, P. 2015. Controlling procedural modeling programs with stochastically-ordered sequential monte carlo. ACM Trans. Graph. 34, 4 (July). Google ScholarDigital Library
    37. Robert, C., and Casella, G. 2013. Monte Carlo statistical methods. Springer Science & Business Media. Google ScholarDigital Library
    38. Savage, V., Head, A., Hartmann, B., Goldman, D. B., Mysore, G., and Li, W. 2015. Lamello: Passive acoustic sensing for tangible input components. In Proc. CHI 2015, ACM. Google ScholarDigital Library
    39. Schumacher, C., Bickel, B., Rys, J., Marschner, S., Daraio, C., and Gross, M. 2015. Microstructures to control elasticity in 3d printing. ACM Trans. Graph. 34, 4 (July). Google ScholarDigital Library
    40. Selamet, A., Denia, F., and Besa, A. 2003. Acoustic behavior of circular dual-chamber mufflers. Journal of Sound and Vibration 265, 5, 967–985.Google ScholarCross Ref
    41. Sigmund, O. 1994. Materials with prescribed constitutive parameters: an inverse homogenization problem. International Journal of Solids and Structures 31, 17, 2313–2329.Google ScholarCross Ref
    42. Stettner, A., and Greenberg, D. P. 1989. Computer graphics visualization for acoustic simulation. In Computer Graphics, vol. 23. Google ScholarDigital Library
    43. Takala, T., and Hahn, J. 1992. Sound rendering. In Computer Graphics, vol. 26, 211–220. Google ScholarDigital Library
    44. Tao, Z., and Seybert, A. 2003. A review of current techniques for measuring muffler transmission loss. Tech. rep., SAE Technical Paper.Google Scholar
    45. Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proc. of SIGGRAPH 2001. Google ScholarDigital Library
    46. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM Trans. Graph. 30, 4. Google ScholarDigital Library
    47. Willis, K. D. D., and Wilson, A. D. 2013. Infrastructs: Fabricating information inside physical objects for imaging in the terahertz region. ACM Trans. Graph. 32, 4 (July). Google ScholarDigital Library
    48. Wojtan, C., Mucha, P. J., and Turk, G. 2006. Keyframe control of complex particle systems using the adjoint method. In Proc. SCA. Google ScholarDigital Library
    49. Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. 1997. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23, 4. Google ScholarDigital Library
    50. Zoran, A. 2011. The 3d printed flute: Digital fabrication and design of musical instruments. Journal of New Music Research 40, 4, 379–387.Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page: