“A two-scale microfacet reflectance model combining reflection and diffraction” by Holzschuch and Pacanowski

  • ©Nicolas Holzschuch and Romain Pacanowski

Conference:


Type(s):


Title:

    A two-scale microfacet reflectance model combining reflection and diffraction

Session/Category Title:   Reflectance & Scattering


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Adequate reflectance models are essential for the production of photorealistic images. Microfacet reflectance models predict the appearance of a material at the macroscopic level based on microscopic surface details. They provide a good match with measured reflectance in some cases, but not always. This discrepancy between the behavior predicted by microfacet models and the observed behavior has puzzled researchers for a long time. In this paper, we show that diffraction effects in the micro-geometry provide a plausible explanation. We describe a two-scale reflectance model, separating between geometry details much larger than wavelength and those of size comparable to wavelength. The former model results in the standard Cook-Torrance model. The latter model is responsible for diffraction effects. Diffraction effects at the smaller scale are convolved by the micro-geometry normal distribution. The resulting two-scale model provides a very good approximation to measured reflectances.

References:


    1. M. Ashikhmin and S. Premože. 2007. Distribution-based BRDFs. University of Utah. (2007). http://www.cs.utah.edu/~premoze/dbrdf/.Google Scholar
    2. M. M. Bagher, J. Snyder, and D. Nowrouzezahrai. 2016. A Non-Parametric Factor Microfacet Model for Isotropic BRDFs. ACM Trans. Graph. 36, 5, Article 159 (July 2016), 16 pages. Google ScholarDigital Library
    3. M. M. Bagher, C. Soler, and N. Holzschuch. 2012. Accurate fitting of measured reflectances using a Shifted Gamma micro-facet distribution. Computer Graphics Forum 31, 4 (June 2012). Google ScholarDigital Library
    4. P. Beckmann and A. Spizzichino. 1987. The scattering of electromagnetic waves from rough surfaces. Artech House.Google Scholar
    5. A. Brady, J. Lawrence, P. Peers, and W. Weimer. 2014. genBRDF: Discovering New Analytic BRDFs with Genetic Programming. ACM Trans. Graph. 33, 4, Article 114 (July 2014), 11 pages. Google ScholarDigital Library
    6. B. Burley. 2012. Physically-Based Shading at Disney. In Siggraph course: Practical Physically Based Shading in Film and Game Production, Stephen Hill and Stephen McAuley (Eds.). ACM. https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdfGoogle Scholar
    7. S. D. Butler, S. E. Nauyoks, and M. A. Marciniak. 2015a. Experimental analysis of bidirectional reflectance distribution function cross section conversion term in direction cosine space. Opt. Lett. 40, 11 (Jun 2015), 2445–2448. Google ScholarCross Ref
    8. S. D. Butler, S. E. Nauyoks, and M. A. Marciniak. 2015b. Experimental measurement and analysis of wavelength-dependent properties of the BRDF. Proc. SPIE 9611, Imaging Spectrometry XX (2015). Google ScholarCross Ref
    9. E. L. Church and P. Z. Takacs. 1986. Statistical And Signal Processing Concepts In Surface Metrology. (1986). Google ScholarCross Ref
    10. R. L. Cook and K. E. Torrance. 1982. A Reflectance Model for Computer Graphics. ACM Trans. Graph. 1, 1 (1982), 7–24. Google ScholarDigital Library
    11. S. Ergun, S. Önel, and A. Ozturk. 2016. A General Micro-flake Model for Predicting the Appearance of Car Paint. In Eurographics Symposium on Rendering – EI & I. Google ScholarCross Ref
    12. J. E. Harvey. 1975. Light-Scattering Characteristics of Optical Surface. Ph.D. Dissertation. University of Arizona. http://www.dtic.mil/dtic/tr/fulltext/u2/a095132.pdf Adviser: R. V. Shack.Google Scholar
    13. J. E. Harvey, S. Schröder, N. Choi, and A. Duparré. 2012. Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles. Optical Engineering 51, 1 (2012). Google ScholarCross Ref
    14. X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg. 1991. A Comprehensive Physical Model for Light Reflection. Computer Graphics (ACM SIGGRAPH ’91 Proceedings) 25, 4 (July 1991), 175–186.Google Scholar
    15. E. Heitz. 2014a. Multi-scale appearance for realistic and efficient rendering of complex surfaces. Ph.D. Dissertation. Université de Grenoble. https://tel.archives-ouvertes.fr/tel-01073518Google Scholar
    16. E. Heitz. 2014b. Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs. Journal of Computer Graphics Techniques 3, 2 (June 2014), 32–91. http://jcgt.org/published/0003/02/03/Google Scholar
    17. E. Heitz, J. Hanika, E. d’Eon, and C. Dachsbacher. 2016. Multiple-Scattering Microfacet BSDFs with the Smith Model. ACM Trans. Graph. (Proc. SIGGRAPH 2016) 35, 4, Article 58 (July 2016). Google ScholarDigital Library
    18. B. J. Hoenders, E. Jakeman, H. P. Baltes, and B. Steinle. 1979. K Correlations and Facet Models in Diffuse Scattering. Optica Acta: International Journal of Optics 26, 10 (1979), 1307–1319. Google ScholarCross Ref
    19. N. Holzschuch and R. Pacanowski. 2015a. A physically accurate reflectance model combining reflection and diffraction. Research Report RR-8807. INRIA. https://hal.inria.fr/hal-01224702Google Scholar
    20. N. Holzschuch and R. Pacanowski. 2015b. Identifying diffraction effects in measured reflectances. In Eurographics Workshop on Material Appearance Modeling. https://hal.inria.fr/hal-01170614Google Scholar
    21. N. Holzschuch and R. Pacanowski. 2016. A Physically-Based Reflectance Model Combining Reflection and Diffraction. Research Report RR-8964. INRIA. https://hal.inria.fr/hal-01386157Google Scholar
    22. W. Jakob, E. D’Eon, O. Jakob, and S. Marschner. 2014. A Comprehensive Framework for Rendering Layered Materials. ACM Trans. Graph. (Proc. SIGGRAPH 2014) 33, 4 (2014). Google ScholarDigital Library
    23. H. W. Jensen, S. Marschner, M. Levoy, and P. Hanrahan. 2001. A Practical Model for Subsurface Light Transport. In SIGGRAPH 2001. 511–518. Google ScholarDigital Library
    24. A. Krywonos. 2006. Predicting Surface Scatter using a Linear Systems Formulation of Non-Paraxial Scalar Diffraction. Ph.D. Dissertation. University of Central Florida. http://etd.fcla.edu/CF/CFE0001446/Krywonos_Andrey_200612_PhD.pdf Adviser:J. E. Harvey.Google Scholar
    25. E. P. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg. 1997. Non-linear approximation of reflectance functions. In SIGGRAPH ’97. 117–126. Google ScholarDigital Library
    26. M. I. A. Lourakis. 2004. levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++. http://www.ics.forth.gr/~lourakis/levmar/. (July 2004).Google Scholar
    27. J. Löw, J. Kronander, A. Ynnerman, and J. Unger. 2012. BRDF models for accurate and efficient rendering of glossy surfaces. ACM Trans. Graph. 31, 1, Article 9 (Feb. 2012), 14 pages. Google ScholarDigital Library
    28. W. Matusik, H. Pfister, M. Brand, and L. McMillan. 2003. A Data-Driven Reflectance Model. ACM Trans. Graph. 22, 3 (2003). Google ScholarDigital Library
    29. A. Ngan, F. Durand, and W. Matusik. 2005. Experimental Analysis of BRDF Models. In Eurographics Symposium on Rendering. Google ScholarCross Ref
    30. B. Smith. 1967. Geometrical shadowing of a random rough surface. IEEE Transactions on Antennas and Propagation 15, 5 (Sept. 1967). Google ScholarCross Ref
    31. J. Stam. 1999. Diffraction Shaders. In SIGGRAPH ’99. ACM, 101–110. Google ScholarDigital Library
    32. K. E. Torrance and E. M. Sparrow. 1967. Theory for Off-Specular Reflection From Roughened Surfaces. J. Opt. Soc. Am. 57, 9 (Sept. 1967), 1105–1112. Google ScholarCross Ref
    33. T. S. Trowbridge and K. P. Reitz. 1975. Average irregularity representation of a rough surface for ray reflection. J. Opt. Soc. Am. 65, 5 (1975), 531–536. Google ScholarCross Ref
    34. C. L. Vernold and J. E. Harvey. 1998. A modified Beckmann-Kirchhoff scattering theory for nonparaxial angles. Proc. SPIE 3426, Scattering and Surface Roughness II (1998), 51–56. Google ScholarCross Ref
    35. B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. 2007. Microfacet models for refraction through rough surfaces. In Eurographics Symposium on Rendering. 195–206. Google ScholarCross Ref
    36. A. Weidlich and A. Wilkie 2007 Arbitrarily layered micro-facet surfaces. In GRAPHITE ’07. 171–178. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: