“A stereo display prototype with multiple focal distances” by Akeley, Watt, Girshick and Banks

  • ©Kurt Akeley, Simon J. Watt, Ahna Reza Girshick, and Martin (Marty) S. Banks




    A stereo display prototype with multiple focal distances



    Typical stereo displays provide incorrect focus cues because the light comes from a single surface. We describe a prototype stereo display comprising two independent fixed-viewpoint volumetric displays. Like autostereoscopic volumetric displays, fixed-viewpoint volumetric displays generate near-correct focus cues without tracking eye position, because light comes from sources at the correct focal distances. (In our prototype, from three image planes at different physical distances.) Unlike autostereoscopic volumetric displays, however, fixed-viewpoint volumetric displays retain the qualities of modern projective graphics: view-dependent lighting effects such as occlusion, specularity, and reflection are correctly depicted; modern graphics processor and 2-D display technology can be utilized; and realistic fields of view and depths of field can be implemented. While not a practical solution for general-purpose viewing, our prototype display is a proof of concept and a platform for ongoing vision research. The design, implementation, and verification of this stereo display are described, including a novel technique of filtering along visual lines using 1-D texture mapping.


    1. AKELEY, K. 2004. Achieving near-correct focus cues using multiple image planes. PhD thesis, Stanford University. Google ScholarDigital Library
    2. BLACKWELL, H. 1946. Contrast thresholds of the human eye. Journal of the Optical Society of America 36, 624–643.Google ScholarCross Ref
    3. BOEDER, P. 1961. Co-operation of the extraocular muscles. American Journal of Ophthalmology 51, 397–403.Google ScholarCross Ref
    4. BROOKS, F., 2002. VR presentation at Hewlett Packard, Palo Alto, Jan.Google Scholar
    5. DOWNING, E., HESSELINK, L., RALSTON, J., AND MACFARLANE, R. 1996. A three-color, solid-state, three-dimensional display. Science 273, 1185–1189.Google ScholarCross Ref
    6. FAVALORA, G. E., NAPOLI, J., HALL, D. M., DORVAL, R. K., GIOVINCO, M. G. RICHMOND, M. J., AND CHUN, W. S. 2002. 100 million-voxel volumetric display. Proceedings of the SPIE 4712, 300–312.Google Scholar
    7. HOWARD, I. P., AND ROGERS, B. J. 1995. Binocular Vision and Stereopsis. Oxford University Press.Google Scholar
    8. KILGARD. M. J. 1996. OpenGL Programming for the X Window System. Addison-Wesley Publishing Company. Google ScholarDigital Library
    9. KOOI, F. L., AND TOET, A. 2003. Additive and subtractive transparent depth displays. The International Society for Optical Engineering.Google Scholar
    10. LEVICK, W. R. 1972. Receptive fields of retinal ganglion cells. In Handbook of Sensory Physiology, vol. VII/2. Springer Verlag: Berlin, 538–539.Google Scholar
    11. LEVITT, H. 1971. Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America 49, 467–477.Google ScholarCross Ref
    12. LIGHTSPACE TECHNOLOGIES. 2003. DepthCube technology white paper. Available at www.lightspacetech.com/.Google Scholar
    13. LUCENTE, M., AND GALYEAN, T. A. 1995. Rendering interactive holographic images. In Proceedings of ACM SIGGRAPH 95, ACM Press / ACM SIGGRAPH, New York, R. Cook, Ed., Computer Graphics proceedings, Annual Conference Series, ACM, 387–394. Google ScholarDigital Library
    14. LUCENTE, M. 1997. Interactive three-dimensional holographic displays: seeing the future in depth. Computer Graphics (May). Google ScholarDigital Library
    15. MATHER, G., AND SMITH, D. R. R. 2000. Depth cue integration: stereopsis and image blur. Vision Research 40, 3501–3506.Google ScholarCross Ref
    16. MCDOWALL, I., AND BOLAS, M. 1994. Fakespace labs accommodation display research. Unpublished report.Google Scholar
    17. MCQUAIDE, S. C., SEIBEL, E. J., B., R., AND III, T. A. F. 2002. Three-dimensional virtual retinal display system using a deformable membrane mirror. 2002 SID International Symposium Digest of Technical Papers 33, 1324–1327.Google ScholarCross Ref
    18. MON-WILLIAMS, M., WANN, J. P., AND RUSHTON, S. 1993. Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display. Ophthalmic & Physiological Optics 13 (Oct.), 387–391.Google ScholarCross Ref
    19. NORTH, W. J., AND WOODLING, C. H. 1970. Apollo crew procedures, simulation, and flight planning. In Astronautics & Aeronautics, vol. March. Available at http://history.nasa.gov/SP-287/sp287.htm.Google Scholar
    20. NVIDIA CORPORATION. 2002. NVIDIA Quadro4 XGL The Standard for Workstation Graphics. Available at www.nvidia.com/object/LO_20020215_7302.html.Google Scholar
    21. NWODOH, T. A., AND BENTON, S. A. 2000. Chidi holographic video system. In SPIE Proceedings on Practical Holography, vol. 3956.Google Scholar
    22. OMURA, K., SHIWA, S., AND KISHINO, F., 1996. 3-D display with accommodative compensation (3DDAC) employing real-time gaze detection. SID 96 Digest, 889–892.Google Scholar
    23. PERLIN, K., PAXIA, S., AND KOLLIN, J. S. 2000. An autostereoscopic display. In Proceedings of ACM SIGGRAPH 2000, ACM Press / ACM SIGGRAPH, New York, K. Akeley, Ed., Computer Graphics Proceedings, Annual Conference Series, ACM, 319–326. Google ScholarDigital Library
    24. ROLLAND, J. P., KRUEGER, M. W., AND GOON, A. A. 1999. Dynamic focusing in head-mounted displays. In SPIE Volume 3639, 463–470.Google Scholar
    25. SAMPSELL, J. B. 2004. An overview of the performance envelope of digital micromirror device (dmd) based projection display systems. Tech. rep., Texas Instruments. Available at http://www.dlp.com/dlp_technology/.Google Scholar
    26. SEGAL, M., AND AKELEY, K. 2002. The OpenGL Graphics System: A Specification (Version 1.4). OpenGL Architecture Review Board. Editor: Jon Leech.Google Scholar
    27. SILVERMAN, N. L., SCHOWENGERDT, B. T., KELLY, J. P., AND SEIBEL, E. J. 2003. 58.51: Late-news paper: Engineering a retinal scanning laser display with integrated accommodative depth cues. SID 03 Digest, 1538–1541.Google Scholar
    28. SIMON, A., SMITH, R. C., AND PAWLICKI, R. R. 2004. OmniStereo for panoramic virtual environment display systems. In Proceedings of VR 2004, IEEE, 67–73. Google ScholarDigital Library
    29. SUYAMA, S., TAKADA, H., UEHIRA, K., AND SAKAI, S. 2000. A novel direct-vision 3-D display using luminance-modulated two 2-D images displayed at different depths. SID 00 Digest 54.1, 1208–1211.Google Scholar
    30. SUYAMA, S., DATE, M., AND TAKADA, H. 2000. Three-dimensional display system with dual-frequency liquid-crystal varifocal lens. Japanese Journal of Applied Physics 39 (Feb.), 480–484.Google ScholarCross Ref
    31. SUYAMA, S., TAKADA, H., UEHIRA, K., AND SAKAI, S. 2001. A new method for protruding apparent 3-D images in the DFD (depth-fused 3-D) display. 2001 International Symposium Digest of Technical Papers 32, 1300–1303.Google ScholarCross Ref
    32. TAN, D. S., CZERWINSKI, M., AND ROBERTSON, G. 2003. Women go with the (optical) flow. In CHI 2003. Google ScholarDigital Library
    33. WANDELL, B. A. 1995. Foundations of Vision. Sinauer Associates, Inc.Google Scholar
    34. WANN, J. P., RUSHTON, S., AND MON-WILLIAMS, M. 1995. Natural problems for stereoscopic depth perception in virtual environments. Vision Research 35, 2731–2736.Google ScholarCross Ref
    35. WATT, S. J., AKELEY, K., AND BANKS, M. S. 2003. Focus cues to display distance affect perceived depth from disparity. Journal of Vision 3(9), 66a.Google ScholarCross Ref
    36. WÖPKING, M. 1995. Viewing comfort with stereoscopic pictures: An experimental study on the subjective effects of disparity magnitude and depth of focus. Journal of the SID 3(3), 101–103.Google Scholar
    37. WRIGHT, S. L. 2002. IBM 9.2-megapixel flat-panel display: Technology and infrastructure. SPIE Proceedings 4712 (Apr.), 24–34.Google Scholar

ACM Digital Library Publication:

Overview Page: