“A reflectance display” by Glasner, Zickler and Levin

  • ©Daniel Glasner, Todd Zickler, and Anat Levin




    A reflectance display

Session/Category Title: Displays




    We present a reflectance display: a dynamic digital display capable of showing images and videos with spatially-varying, user-defined reflectance functions. Our display is passive: it operates by phase-modulation of reflected light. As such, it does not rely on any illumination recording sensors, nor does it require expensive on-the-fly rendering. It reacts to lighting changes instantaneously and consumes only a minimal amount of energy. Our work builds on the wave optics approach to BRDF fabrication of Levin et al. shortciteLevinBRDFFab13. We replace their expensive one-time hardware fabrication with a programable liquid crystal spatial light modulator, retaining high resolution of approximately 160 dpi. Our approach enables the display of a much wider family of angular reflectances, and it allows the display of dynamic content with time varying reflectance properties—“reflectance videos”. To facilitate these new capabilities we develop novel reflectance design algorithms with improved resolution tradeoffs. We demonstrate the utility of our display with a diverse set of experiments including display of custom reflectance images and videos, interactive reflectance editing, display of 3D content reproducing lighting and depth variation, and simultaneous display of two independent channels on one screen.


    1. Ahrenberg, L., Benzie, P., Magnor, M., and Watson, J. 2006. Computer generated holography using parallel commodity graphics hardware. Opt. Express 14, 17 (Aug), 7636–7641. Google ScholarDigital Library
    2. Ahrenberg, L., Benzie, P., Magnor, M., and Watson, J. 2008. Computer generated holograms from three dimensional meshes using an analytic light transport model. Appl. Opt. 47, 10 (Apr), 1567–1574.Google ScholarCross Ref
    3. Benton, S. A., and Bove, V. M. 2007. Holographic Imaging. Wiley-Interscience. Google ScholarDigital Library
    4. Benton, S. 1991. Experiments in holographic video imaging. In SPIE, vol. 08, 247–267.Google Scholar
    5. Comiskey, B., Albert, J. D., Yoshizawa, H., and Jacobson, J. 1998. An electrophoretic ink for all-printed reflective electronic displays. Nature 394, 6690, 253–255.Google Scholar
    6. Cossairt, O., Nayar, S. K., and Ramamoorthi, R. 2008. Light Field Transfer: Global Illumination Between Real and Synthetic Objects. ACM SIGGRAPH (Aug). Google ScholarDigital Library
    7. Dallas, W. J. 1980. Computer-generated holograms. The Computer in Optical Research of Topics in Applied Physics 41, 291–366.Google ScholarCross Ref
    8. DeBitetto, D. J. 1969. Holographic panoramic stereograms synthesized from white light recordings. Appl. Opt. 8, 1740–1741.Google ScholarCross Ref
    9. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4 (July), 62:1–62:10. Google ScholarDigital Library
    10. Finckh, M., Dammertz, H., and Lensch, H. P. A. 2010. Geometry construction from caustic images. In ECCV, 464–477. Google ScholarDigital Library
    11. Fuchs, M., Raskar, R., Seidel, H.-P., and Lensch, H. P. A. 2008. Towards passive 6D reflectance field displays. ACM Trans. Graph. 27, 3. Google ScholarDigital Library
    12. Gerchberg, R. W., and Saxton, W. O. 1972. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237.Google Scholar
    13. Goodman, J. W. 1968. Introduction to Fourier Optics. McGraw-Hill Book Company.Google Scholar
    14. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM SIGGRAPH 29, 3. Google ScholarDigital Library
    15. Hermerschmidt, A., Osten, S., Krüger, S., and Blümel, T. 2007. Wave front generation using a phase-only modulating liquid-crystal-based micro-display with hdtv resolution. In International Congress on Optics and Optoelectronics, International Society for Optics and Photonics, 65840E-65840E.Google Scholar
    16. Hirsch, M., Lanman, D., Holtzman, H., and Raskar, R. 2009. BiDi screen: a thin, depth-sensing LCD for 3D interaction using light fields. ACM Trans. Graph. 28, 5. Google ScholarDigital Library
    17. Hirsch, M., Izadi, S., Holtzman, H., and Raskar, R. 2012. 8D display: a relightable glasses-free 3d display. In Proceedings of the 2012 ACM international conference on Interactive tabletops and surfaces, ACM, 319–322. Google ScholarDigital Library
    18. Hirsch, M., Izadi, S., Holtzman, H., and Raskar, R. 2013. 8D: interacting with a relightable glasses-free 3D display. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, 2209–2212. Google ScholarDigital Library
    19. Horisaki, R., and Tanida, J. 2013. Reflectance field display. Opt. Express 21, 9 (May), 11181–11186.Google ScholarCross Ref
    20. Hullin, M. B., Lensch, H. P. A., Raskar, R., Seidel, H.-P., and Ihrke, I. 2011. Dynamic display of BRDFs. In EUROGRAPHICS, 475–483.Google Scholar
    21. Hullin, M. B., Ihrke, I., Heidrich, W., Weyrich, T., Damberg, G., and Fuchs, M. 2013. Computational fabrication and display of material appearance. In Eurographics State-of-the-Art Reports (STAR).Google Scholar
    22. IMEC, 2011. IMEC scientific report 2011. http://www.imec.be/ScientificReport/SR2011/1414043.html.Google Scholar
    23. Kim, S.-C., Moon, J.-W., Lee, D.-H., Son, K.-C., and Kim, E.-S., 2005. Holographic full-color 3D display system using color-LCoS spatial light modulator.Google Scholar
    24. Kiser, T., Eigensatz, M., Nguyen, M. M., Bompas, P., and Pauly, M. 2012. Architectural caustics controlling light with geometry. In Advances in Architectural Geometry.Google Scholar
    25. Klug, M. A., Halle, M. W., Lucente, M. E., and Plesniak, W. J. 1993. Compact prototype one-step ultragram printer. Proc. SPIE 1914, 15–24.Google Scholar
    26. Kogelnik, H. 1969. Coupled-wave theory for thick hologram gratings. Bell System Technical Journal 48, 2909.Google ScholarCross Ref
    27. Koike, T., and Naemura, T. 2008. BRDF display: interactive view dependent texture display using integral photography. In Proceedings of the 2008 workshop on Immersive projection technologies/Emerging display technologiges. Google ScholarDigital Library
    28. Lan, Y., Dong, Y., Pellacini, F., and Tong, X. 2013. Bi-scale appearance fabrication. ACM Trans. Graph. 32, 4. Google ScholarDigital Library
    29. Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: dynamic light field display using multi-layer LCDs. ACM Trans. Graph. 30, 6, 186. Google ScholarDigital Library
    30. Levin, A., Glasner, D., Xiong, Y., Durand, F., Freeman, B., Matusik, W., and Zickler, T. 2013. Fabricating BRDFs at high spatial resolution using wave optics. ACM SIGGRAPH. Google ScholarDigital Library
    31. Lucente, M. E. 1993. Interactive computation of holograms using a look-up table. J. of Electronic Imaging 2, 1, 28–34.Google ScholarCross Ref
    32. Lucente, M. 1994. Diffraction-specific Fringe Computation for Electro-holography. PhD thesis. AAI0575566. Google ScholarDigital Library
    33. Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., and Davis, J. 2012. Printing reflectance functions. ACM Trans. Graph. 31, 3. Google ScholarDigital Library
    34. Mann, S. 1995. Recording Lightspace so Shadows and Highlights Vary with Varying Viewing Illumination. 2538–2540.Google Scholar
    35. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM SIGGRAPH Asia 28, 5. Google ScholarDigital Library
    36. Nayar, S., Belhumeur, P., and Boult, T. 2004. Lighting Sensitive Display. ACM Trans. on Graphics 23, 4, 963–979. Google ScholarDigital Library
    37. Ng, R., Levoy, M., Bredif, M., Duval, G., Horowitz, M., and Hanrahan, P. 2005. Light field photography with a handheld plenoptic camera. Stanford U. Tech Rep CSTR 2005-02.Google Scholar
    38. Ochiai, Y., Oyama, A., and Toyoshima, K. 2012. A colloidal display: membrane screen that combines transparency, BRDF and 3D volume. In ACM SIGGRAPH Emerging Technologies. Google ScholarDigital Library
    39. Ochiai, Y., Oyama, A., Hoshi, T., and Rekimoto, J. 2013. Reflective, deformable, colloidal display: a waterfall-based colloidal membrane using focused ultrasonic waves. In SIGGRAPH Posters, 49. Google ScholarDigital Library
    40. Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Computer Graphics Forum (Proc. Eurographics) 30, 2 (Apr.).Google ScholarCross Ref
    41. Patow, G., and Pueyo, X. 2005. A survey of inverse surface design from light transport behavior specification. Comput. Graph. Forum 24, 4, 773–789.Google ScholarCross Ref
    42. Patow, G., Pueyo, X., and Vinacua, A. 2007. User-guided inverse reflector design. Comput. Graph. 31, 3 (June), 501–515. Google ScholarDigital Library
    43. Redman, J. 1968. The three-dimensional reconstruction of people and outdoor scenes using holographic multiplexing. Proceedings of SPIE Seminar-in Depth on Holography 15, 117122.Google Scholar
    44. Rusinkiewicz, S. 1998. A new change of variables for efficient BRDF representation. In EGSR.Google Scholar
    45. Smalley, D. E., Smithwick, Q. Y. J., Bove, V. M., Barabas, J., and Jolly, S. 2013. Anisotropic leaky-mode modulator for holographic video displays. Nature, 7454, 313317.Google Scholar
    46. St-Hilaire, P., Benton, S. A., Lucente, M. E., and Hubel, P. M., 1992. Color images with the MIT holographic video display.Google Scholar
    47. Torrance, K. E., and Sparrow, E. M. 1967. Theory for off-specular reflection from roughened surfaces. JOSA 57, 9.Google ScholarCross Ref
    48. Tricoles, G. 1987. Computer generated holograms: an historical review. Appl. Opt. 26, 20 (Oct), 4351–4357.Google ScholarCross Ref
    49. Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. 31, 4, 80. Google ScholarDigital Library
    50. Weyrich, T., Deng, J., Barnes, C., Rusinkiewicz, S., and Finkelstein, A. 2007. Digital Bas-Relief from 3D Scenes. ACM SIGGRAPH 26, 3 (Aug.). Google ScholarDigital Library
    51. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM. SIGGRAPH 28, 3 (Aug.). Google ScholarDigital Library
    52. Yaroslavsky, L. 2004. Digital Holography and Digital Image Processing. Kluwer Academic Publishers.Google Scholar
    53. Ziegler, R., Bucheli, S., Ahrenberg, L., Magnor, M., and Gross, M. 2007. A bidirectional light field-hologram transform. In Computer Graphics Forum, vol. 26, 435–446.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: