“A rapid hierarchical rendering technique for translucent materials”

  • ©Henrik Wann Jensen and Juan Buhler

  • ©Henrik Wann Jensen and Juan Buhler

Conference:


Type(s):


Title:

    A rapid hierarchical rendering technique for translucent materials

Presenter(s)/Author(s):



Abstract:


    This paper introduces an efficient two-pass rendering technique for translucent materials. We decouple the computation of irradianceat the surface from the evaluation of scattering inside the material.This is done by splitting the evaluation into two passes, where the first pass consists of computing the irradiance at selected points on the surface. The second pass uses a rapid hierarchical integration technique to evaluate a diffusion approximation based on the irradiance samples. This approach is substantially faster than previous methods for rendering translucent materials, and it has the advantage that it integrates seamlessly with both scanline rendering and global illumination methods. We show several images and animations from our implementation that demonstrate that the approach is both fast and robust, making it suitable for rendering translucent materials in production.

References:


    1. APPEL, A. 1985. An efficient program for many-body simulations. SIAM Journal of Scientific Statistical Computing 6, 85-103.Google Scholar
    2. CHANDRASEKHAR, S. 1960. Radiative Transfer. Oxford Univ. Press.Google Scholar
    3. DEBEVEC, P., 1999. St. Peter’s Basilica (www.debevec.org/probes/).Google Scholar
    4. DORSEY, J., EDELMAN, A., JENSEN, H. W., LEGAKIS, J., AND PEDERSEN, H. K. 1999. Modeling and rendering of weathered stone. In Proceedings of SIGGRAPH’99, 225-234. Google Scholar
    5. FURUTSO, K. 1980. Diffusion equation derived from space-time transport equation. J. Opt. Soc. Am 70, 360.Google Scholar
    6. GEMERT, M., JACQUES, S., STERENBORG, H., AND STAR, W. 1989. Skin optics. IEEE Trans. on Biomedical Eng. 16, 1146-1156.Google Scholar
    7. GROENHUIS, R. A., FERWERDA, H. A., AND BOSCH, J. J. T. 1983. Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory. Applied Optics 22, 2456-2462.Google Scholar
    8. HANRAHAN, P., AND KRUEGER, W. 1993. Reflection from layered surfaces due to subsurface scattering. In Computer Graphics (SlGGRAPH’93 Proceedings), 165-174. Google Scholar
    9. HENYEY, L., AND GREENSTEIN, J. 1941. Diffuse radiation in the galaxy. Astrophysics Journal 93, 70-83.Google Scholar
    10. ISHIMARU, A. 1978. Wave Propagation and Scattering in Random Media, vol. 1. Academic Press, New York.Google Scholar
    11. JENSEN, H. W., MARSCHNER, S. R., LEVOY, M., AND HANRAHAN, P. 2001. A practical model for subsurface light transport. In Proceedings of SIGGRAPH 2001, 511-518. Google Scholar
    12. JENSEN, H. W. 1996. Global illumination using photon maps. In Rendering Techniques ’96, Springer Wien, X. Pueyo and P. Schröder, Eds., 21-30. Google Scholar
    13. KOENDERINK, J., ANDVAN DOORN, A. 2001. Shading in the case of translucent objects. In Proceedings of SPIE, vol. 4299, 312-320.Google Scholar
    14. NICODEMUS, F. E., RICHMOND, J. C., HSIA, J. J., GINSBERG, I. W., AND LIMPERIS, T. 1977. Geometric considerations and nomenclature for reflectance. Monograph 161, National Bureau of Standards (US), Oct.Google Scholar
    15. PHARR, M., AND HANRAHAN, P. 2000. Monte carlo evaluation of non-linear scattering equations for subsurface reflection. In Proceedings of SIGGRAPH 2000, 75-84. Google Scholar
    16. STAM, J. 1995. Multiple scattering as a diffusion process. In Eurographics Rendering Workshop 1995, Eurographics.Google Scholar
    17. TURK, G. 1992. Re-tiling polygonal surfaces. In Computer Graphics (SIGGRAPH ’92 Proceedings), vol. 26, 55-64. Google Scholar
    18. WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988. A ray tracing solution for diffuse interreflection. In Computer Graphics (SIGGRAPH ’88 Proceedings), vol. 22, 85-92. Google Scholar
    19. WYMAN, D. R., PATTERSON, M. S., AND WILSON, B. C. 1980. Similarity relations for anisotropic scattering in monte carlo simulations of deeply penetrating neutral sparticle. J. Comp. Physics 81, 137-150. Google Scholar


ACM Digital Library Publication:



Overview Page: