“A practical simulation of dispersed bubble flow” by Kim, Song and Ko

  • ©Doyub Kim, Oh-young Song, and Hyeong-Seok Ko




    A practical simulation of dispersed bubble flow



    In this paper, we propose a simple and efficient framework for simulating dispersed bubble flow. Instead of modeling the complex hydrodynamics of numerous small bubbles explicitly, our method approximates the average motion of these bubbles using a continuum multiphase solver. Then, the subgrid interactions among bubbles are computed using our new stochastic solver. Using the proposed scheme, we can efficiently simulate complex scenes with millions of bubbles.


    1. Blasi, P., Saec, B. L., and Schlick, C. 1993. A rendering algorithm for discrete volume density objects. Comput. Graph. Forum 12, 3, 201–210.Google ScholarCross Ref
    2. Cleary, P. W., Pyo, S. H., Prakash, M., and Koo, B. K. 2007. Bubbling and frothing liquids. ACM Trans. Graph. 26, 3, 97. Google ScholarDigital Library
    3. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3, 736–744. Google ScholarDigital Library
    4. Geiger, W., Leo, M., Rasmussen, N., Losasso, F., and Fedkiw, R. 2006. So real it’ll make you wet. In ACM SIGGRAPH 2006 Sketches, 20. Google ScholarDigital Library
    5. Greenwood, S. T., and House, D. H. 2004. Better with bubbles: enhancing the visual realism of simulated fluid. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, 287–296. Google ScholarDigital Library
    6. Hassan, N. M. S., Khan, M. M. K., and Rasul, M. G. 2008. a study of bubble trajectory and drag co-efficient in water and non-newtonian fluids. WSEAS Transactions on Fluid Mechanics 3, 3, 261–270.Google Scholar
    7. Hirt, C. W., and Nichols, B. D. 1981. Volume of fluid (vof) method for the dynamics of free boundaries. J. Comp. Phys. 39, 1, 201–255.Google ScholarCross Ref
    8. Hong, J.-M., and Kim, C.-H. 2003. Animation of bubbles in liquid. Comput. Graph. Forum 22, 3, 253–262.Google ScholarCross Ref
    9. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. 24, 3, 915–920. Google ScholarDigital Library
    10. Hong, J.-M., Lee, H.-Y., Yoon, J.-C., and Kim, C.-H. 2008. Bubbles alive. ACM Trans. Graph. 27, 3, 48. Google ScholarDigital Library
    11. Ishii, M. 1975. Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris.Google Scholar
    12. Kang, M., Fedkiw, R. P., and Liu, X.-D. 2000. A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 3, 323–360. Google ScholarDigital Library
    13. Kim, T., and Carlson, M. 2007. A simple boiling module. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Airela-Ville, Switzerland, Switzerland, 27–34. Google ScholarDigital Library
    14. Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. 26, 3, 98. Google ScholarDigital Library
    15. Kim, D., Song, O.-Y., and Ko, H.-S. 2008. A semi-lagrangian cip fluid solver without dimensional splitting. Comput. Graph. Forum 27, 2, 467–475.Google ScholarCross Ref
    16. Kloeden, P. E., and Platen, E. 1992. Numerical solution of stochastic differential equations. Springer-Verlag, Berlin Heidelberg New York.Google Scholar
    17. Kolmogorov, A. N. 1949. On the fragmentation of drops in turbulent streams. Dokl. Akad. Nauk SSSR 66, 825–828.Google Scholar
    18. Mihalef, V., Unlusu, B., Metaxas, D., Sussman, M., and Hussaini, M. Y. 2006. Physics based boiling simulation. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, 317–324. Google ScholarDigital Library
    19. Mihalef, V., Metaxas, D., and Sussman, M. 2009. Simulation of two-phase flow with sub-scale droplet and bubble effects. Comput. Graph. Forum 28, 2, 229–238.Google ScholarCross Ref
    20. Monaghan, J. 1992. Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543–74.Google ScholarCross Ref
    21. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-based fluid-fluid interaction. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, 237–244. Google ScholarDigital Library
    22. Osher, S., and Fedkiw, R. 2002. The Level Set Method and Dynamic Implicit Surfaces. Springer-Verlag, New York.Google Scholar
    23. Shew, W. L., and Pinton, J.-F. 2006. Dynamical model of bubble path instability. Phys. Rev. Lett. 97, 144508.Google ScholarCross Ref
    24. Song, O.-Y., Shin, H., and Ko, H.-S. 2005. Stable but non-dissipative water. ACM Trans. Graph. 24, 1, 81–97. Google ScholarDigital Library
    25. Stam, J. 1999. Stable fluids. Computer Graphics (Proc. ACM SIGGRAPH ’99) 33, Annual Conference Series, 121–128. Google ScholarDigital Library
    26. Sussman, M. 2003. A second order coupled levelset and volume of fluid method for computing growth and collapse of vapor bubbles. J. Comp. Phys. 187, 1, 110–136. Google ScholarDigital Library
    27. Thürey, N., Sadlo, F., Schirm, S., Müller-Fischer, M., and Gross, M. 2007. Real-time simulations of bubbles and foam within a shallow water framework. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, 191–198. Google ScholarDigital Library
    28. Trafalis, T. B., Oladunni, O., and Papavassiliou, D. V. 2005. Two-phase flow regime identification with a multiclassification support vector machine (svm) model. Ind. Eng. Chem. Res. 44, 12, 4414–4426.Google ScholarCross Ref
    29. Yuu, S., Yasukouchi, N., Hirosawa, Y., and Jotaki, T. 1978. Particle turbulent diffusion in a dust laden round jet. AIChE Journal 24, 509–519.Google ScholarCross Ref
    30. Zheng, W., Yong, J.-H., and Paul, J.-C. 2006. Simulation of bubbles. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, 325–333. Google ScholarDigital Library

ACM Digital Library Publication: