“A perceptual model for disparity” by Didyk, Ritschel, Eisemann, Myszkowski and Seidel

  • ©Piotr Didyk, Tobias Ritschel, Elmar Eisemann, Karol Myszkowski, and Hans-Peter Seidel




    A perceptual model for disparity



    Binocular disparity is an important cue for the human visual system to recognize spatial layout, both in reality and simulated virtual worlds. This paper introduces a perceptual model of disparity for computer graphics that is used to define a metric to compare a stereo image to an alternative stereo image and to estimate the magnitude of the perceived disparity change. Our model can be used to assess the effect of disparity to control the level of undesirable distortions or enhancements (introduced on purpose). A number of psycho-visual experiments are conducted to quantify the mutual effect of disparity magnitude and frequency to derive the model. Besides difference prediction, other applications include compression, and re-targeting. We also present novel applications in form of hybrid stereo images and backward-compatible stereo. The latter minimizes disparity in order to convey a stereo impression if special equipment is used but produces images that appear almost ordinary to the naked eye. The validity of our model and difference metric is again confirmed in a study.


    1. Anstis, S. M., and Howard, I. P. 1978. A Craik-O’Brien-Cornsweet illusion for visual depth. Vision Res., 18, 213–217.Google ScholarCross Ref
    2. Benoit, A., Callet, P. L., Campisi, P., and Cousseau, R. 2008. Quality assessment of stereoscopic images. EURASIP Journal on Image and Video Processing 2008, 659024.Google ScholarCross Ref
    3. Blakemore, C. 1970. The range and scope of binocular depth discrimination in man. J. Physiology 211, 3, 599–622.Google ScholarCross Ref
    4. Bradshaw, M. F., and Rogers, B. J. 1999. Sensitivity to horizontal and vertical corrugations defined by binocular disparity. Vision Res. 39, 18, 3049–56.Google ScholarCross Ref
    5. Brookes, A., and Stevens, K. 1989. The analogy between stereo depth and brightness. Perception 18, 5, 601–614.Google ScholarCross Ref
    6. Burt, P. J., and Adelson, E. H. 1983. The laplacian pyramid as a compact image code. IEEE Trans. on Communications (April).Google ScholarCross Ref
    7. Coutant, B., and Westheimer, G. 1993. Population distribution of stereoscopic ability. Ophthalmic and Physiological Optics 13, 1, 3–7.Google ScholarCross Ref
    8. Cutting, J., and Vishton, P. 1995. Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In Perception of Space and Motion (Handbook Of Perception And Cognition), Academic Press, W. Epstein and S. Rogers, Eds., 69–117.Google Scholar
    9. Daly, S. 1993. The visible differences predictor: an algorithm for the assessment of image fidelity. Digital images and human vision, 179. Google Scholar
    10. Didyk, P., Ritschel, T., Eiseman, E., Myszkowski, K., and Seidel, H.-P. 2010. Adaptive image-based stereo view synthesis. In Proc. VMV.Google Scholar
    11. Held, R., and Banks, M. 2008. Misperceptions in stereoscopic displays: A vision science perspective. In Proceedings of the 5th symposium on Applied perception in graphics and visualization, ACM, 23–32. Google Scholar
    12. Hoffman, D., Girshick, A., Akeley, K., and Banks, M. 2008. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vision 8, 3, 1–30.Google ScholarCross Ref
    13. Howard, I. P., and Rogers, B. J. 2002. Seeing in Depth, vol. 2: Depth Perception. I. Porteous, Toronto.Google Scholar
    14. Ioannou, G., Rogers, B., Bradshaw, M., and Glennerster, A. 1993. Threshold and supra-threshold senssitivity functions for stereoscopic surfaces. Investigative Ophthalmology & Visual Science 34, 1186.Google Scholar
    15. Ishihara, S. 1987. Test for colour-blindness. Kanehara.Google Scholar
    16. Julesz, B. 1971. Foundations of Cyclopean Perception. U. Chicago Press.Google Scholar
    17. Kingdom, F., and Moulden, B. 1988. Border effects on brightness: A rreview of findings, models and issues. Spatial Vision 3, 4, 225–62.Google ScholarCross Ref
    18. Krawczyk, G., Myszkowski, K., and Seidel, H.-P. 2007. Contrast restoration by adaptive countershading. Computer Graphics Forum 26, 3, 581–590.Google ScholarCross Ref
    19. Lambooij, M., IJsselsteijn, W., Fortuin, M., and Heynderickx, I. 2009. Visual discomfort and visual fatigue of stereoscopic displays: A review. J. Imaging Science and Technology 53, 3, 1–12.Google ScholarCross Ref
    20. Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., and Gross, M. 2010. Nonlinear disparity mapping for stereoscopic 3D. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4, 75:1–10. Google ScholarDigital Library
    21. Lee, B., and Rogers, B. 1997. Disparity modulation sensitivity for narrow-band-filtered stereograms. Vis. Res. 37, 13, 1769–77.Google ScholarCross Ref
    22. Livingstone, M. 2002. Vision and Art: The Biology of Seeing. Harry N. Abrams.Google Scholar
    23. Lubin, J. 1995. A visual discrimination model for imaging system design and development. In Vision models for target detection and recognition, World Scientific, P. E., Ed., 245–283.Google Scholar
    24. Lunn, P., and Morgan, M. 1995. The analogy between stereo depth and brightness: a reexamination. Perception 24, 8, 901–4.Google ScholarCross Ref
    25. Mantiuk, R., Myszkowski, K., and Seidel, H. 2006. A perceptual framework for contrast processing of high dynamic range images. ACM Trans. Applied Perception 3, 3, 286–308. Google ScholarDigital Library
    26. Matusik, W., and Pfister, H. 2004. 3DTV: A scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Trans. Graph. 23, 3, 814–824. Google ScholarDigital Library
    27. Meesters, L., IJsselsteijn, W., and Seuntiens, P. 2004. A survey of perceptual evaluations and requirements of three-dimensional tv. Circuits and Systems for Video Technology, IEEE Transactions on 14, 3, 381–391. Google ScholarDigital Library
    28. Oliva, A., Torralba, A., and Schyns, P. G. 2006. Hybrid images. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 527–532. Google ScholarDigital Library
    29. Palmer, S. E. 1999. Vision Science: Photons to Phenomenology. The MIT Press.Google Scholar
    30. Pratt, W. K. 1991. Digital Image Processing. John Wiley & Sons. Google Scholar
    31. Prince, S. J., and Rogers, B. J. 1998. Sensitivity to disparity corrugations in peripheral vision. Vision Res. 38, 17, 2533–7.Google ScholarCross Ref
    32. Ramanarayanan, G., Ferwerda, J., Walter, B., and Bala, K. 2007. Visual Equivalence: Towards a new standard for Image Fidelity. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3. 76. Google ScholarDigital Library
    33. Richards, W. 1971. Anomalous stereoscopic depth perception. JOSA 61, 3, 410–414.Google ScholarCross Ref
    34. Rogers, B., and Graham, M. 1983. Anisotropies in the perception of three-dimensional surfaces. Science 221, 4618, 1409–11.Google Scholar
    35. Sazzad, Z., Yamanaka, S., Kawayokeita, Y., and Horita, Y. 2009. Stereoscopic image quality prediction. In Quality of Multimedia Experience, Intl. Workshop on, IEEE, 180–185.Google Scholar
    36. Seuntiens, P., Meesters, L., and Ijsselsteijn, W. 2006. Perceived quality of compressed stereoscopic images: Effects of symmetric and asymmetric JPEG coding and camera separation. ACM Trans. Appl. Percept. 3, 95–109. Google ScholarDigital Library
    37. Taylor, M., and Creelman, C. 1967. PEST: Efficient estimates on probability functions. J. Acoustical Soc. America 41, 782.Google ScholarCross Ref
    38. Tyler, C. W. 1975. Spatial organization of binocular disparity sensitivity. Vision Res. 15, 5, 583–590.Google ScholarCross Ref
    39. Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image processing 13, 4, 600–612. Google ScholarDigital Library
    40. Wanger, L., Ferwerda, J., and Greenberg, D. 1992. Perceiving spatial relationships in computer-generated images. Computer Graphics and Applications, IEEE 12, 3, 44–58. Google Scholar
    41. Watson, A. 1987. The Cortex transform: rapid computation of simulated neural images. Comp. Vision Graphics and Image Processing 39, 311–327. Google ScholarDigital Library
    42. Weyrich, T., Deng, J., Barnes, C., Rusinkiewicz, S., and Finkelstein, A. 2007. Digital bas-relief from 3D scenes. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3, 32. Google ScholarDigital Library
    43. Wilson, H. 1980. A transducer function for threshold and suprathreshold human vision. Biological Cybernetics 38, 171–8.Google ScholarDigital Library
    44. Winkler, S. 2005. Digital video quality: vision models and metrics. Wiley.Google Scholar

ACM Digital Library Publication:

Overview Page: