“A perceptual control space for garment simulation” by Sigal, Mahler, Diaz, McIntosh, Carter, et al. …

  • ©Leonid Sigal, Moshe Mahler, Spencer Diaz, Kyna McIntosh, Elizabeth Carter, Timothy Richards, and Jessica K. Hodgins

Conference:


Type(s):


Title:

    A perceptual control space for garment simulation

Presenter(s)/Author(s):



Abstract:


    We present a perceptual control space for simulation of cloth that works with any physical simulator, treating it as a black box. The perceptual control space provides intuitive, art-directable control over the simulation behavior based on a learned mapping from common descriptors for cloth (e.g., flowiness, softness) to the parameters of the simulation. To learn the mapping, we perform a series of perceptual experiments in which the simulation parameters are varied and participants assess the values of the common terms of the cloth on a scale. A multi-dimensional sub-space regression is performed on the results to build a perceptual generative model over the simulator parameters. We evaluate the perceptual control space by demonstrating that the generative model does in fact create simulated clothing that is rated by participants as having the expected properties. We also show that this perceptual control space generalizes to garments and motions not in the original experiments.

References:


    1. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. ACM SIGGRAPH. Google ScholarDigital Library
    2. Bhat, K. S., Twigg, C. D., Hodgins, J. K., Khosla, P. K., Popovic, Z., and Seitz, S. M. 2003. Estimating cloth simulation parameters from video. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarDigital Library
    3. Bouman, K. L., Xiao, B., Battaglia, P., and Freeman, W. T. 2013. Estimating the material properties of fabric from video. In International Conference on Computer Vision. Google ScholarDigital Library
    4. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarDigital Library
    5. Brochu, E., Brochu, T., and de Freitas, N. 2010. A bayesian interactive optimization approach to procedural animation design. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarDigital Library
    6. Choi, K., and Ko, H. 2002. Stable but responsive cloth. ACM Transactions on Graphics 21, 3, 604–611. Google ScholarDigital Library
    7. Cutler, L. D., Gershbein, R., Wang, X. C., Curtis, C., Maigret, E., Prasso, L., and Farson, P. 2007. An art-directed wrinkle system for CG characters clothing and skin. Graphical Models 69. Google ScholarDigital Library
    8. Fabric. 2013. Walt disney animation studios production simulator.Google Scholar
    9. Farhadi, A., Endres, I., Hoiem, D., and Forsyth, D. 2009. Describing objects by their attributes. In IEEE Conference on Computer Vision and Pattern Recognition.Google Scholar
    10. Ferrari, V., and Zisserman, A. 2007. Learning visual attributes. In Neural Information and Processing Systems (NIPS).Google Scholar
    11. Frey, B. J., and Dueck, D. 2007. Clustering by passing messages between data points. Science 315 (February), 972–976.Google ScholarCross Ref
    12. Grinspun, E., Krysl, P., and Schroder, P. 2002. Charms: A simple framework for adaptive simulation. ACM Transactions on Graphics 21, 3, 281–290. Google ScholarDigital Library
    13. Guy, S. J., Kim, S., Lin, M. C., and Manocha, D. 2011. Simulating heterogeneous crowd behaviors using personality trait theory. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarDigital Library
    14. Kaldor, J. M., James, D. L., and Marschner, S. 2010. Efficient yarn-based cloth with adaptive contact linearization. ACM Transactions on Graphics 29, 4. Google ScholarDigital Library
    15. Kovashka, A., Parikh, D., and Grauman, K. 2012. Whittle-search: Image search with relative attribute feedback. In IEEE Conference on Computer Vision and Pattern Recognition. Google ScholarDigital Library
    16. Kumar, N., Berg, A., Belhumeur, P., and Nayar, S. 2011. Describable visual attributes for face verification and image search. IEEE TPAMI 33, 10. Google ScholarDigital Library
    17. Laffont, P.-Y., Ren, Z., Tao, X., Qian, C., and Hays, J. 2014. Transient attributes for high-level understanding and editing of outdoor scenes. ACM Transactions on Graphics 33, 4. Google ScholarDigital Library
    18. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2002. A data-driven reflectance model. ACM Transactions on Graphics 22, 3. Google ScholarDigital Library
    19. McNamara, A., Treuille, A., Popovic, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Transactions on Graphics 23, 3, 449–456. Google ScholarDigital Library
    20. Memisevic, R., Sigal, L., and Fleet, D. J. 2012. Shared kernel information embedding for discriminative inference. IEEE TPAMI 34, 4. Google ScholarDigital Library
    21. Miguel, E., Bradley, D., Thomaszewski, B., Bickel, B., Matusik, W., Otaduy, M., and Marschner, S. 2012. Data-driven estimation of cloth simulation models. Computer Graphics Forum 31, 2. Google ScholarDigital Library
    22. Mihalef, V., Metaxas, D., and Sussman, M. 2004. Animation and control of breaking waves. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarDigital Library
    23. O’Donovan, P., Libeks, J., Agarwala, A., and A. H. 2014. Exploratory font selection using crowdsourced attributes. ACM Transactions on Graphics 33, 4. Google ScholarDigital Library
    24. Parikh, D., and Grauman, K. 2011. Relative attributes. In International Conference on Computer Vision. Google ScholarDigital Library
    25. Patterson, G., and Hays, J. 2012. Sun attribute database: Discovering, annotating, and recognizing scene attributes. In IEEE Conference on Computer Vision and Pattern Recognition. Google ScholarDigital Library
    26. R. McDonnell, S. Dobbyn, S. C., C. O’Sullivan R. McDonnell, S. Dobbyn, S. C., McDonnell, C. O. R., Dobbyn, S., Collins, S., and O’Sullivan, C. 2006. Perceptual evaluation of LOD clothing for virtual humans. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarDigital Library
    27. Stam, J. 2009. Nucleus: Towards a unified dynamics solver for computer graphics. IEEE International Conference on Computer-Aided Design and Computer Graphics, 1–11.Google ScholarCross Ref
    28. Tao, L., Yuan, L., and Sun, J. 2009. Skyfinder: Attribute-based sky image search. ACM Transactions on Graphics 28, 3. Google ScholarDigital Library
    29. Troje, N., 2015. www.biomotionlab.ca/demos/bmlwalker.html.Google Scholar
    30. Volino, P., Magnenat-Thalmann, N., and Faure, F. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Transactions on Graphics 26, 3. Google ScholarDigital Library
    31. Wang, H., O’Brien, J. F., and Ramamoorth, R. 2011. Data-driven elastic models for cloth: Modeling and measurement. ACM Transactions on Graphics 30, 4. Google ScholarDigital Library
    32. Wojtan, C., Mucha, P. J., and Turk, G. 2006. Keyframe control of complex particle systems using the adjoint method. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: