“A generic framework for physical light transport” by Steinberg and Yan

  • ©Shlomi Steinberg and Ling-Qi Yan

Conference:


Type:


Title:

    A generic framework for physical light transport

Presenter(s)/Author(s):



Abstract:


    Physically accurate rendering often calls for taking the wave nature of light into consideration. In computer graphics, this is done almost exclusively locally, i.e. on a micrometre scale where the diffractive phenomena arise. However, the statistical properties of light, that dictate its coherence characteristics and its capacity to give rise to wave interference effects, evolve globally: these properties change on, e.g., interaction with a surface, diffusion by participating media and simply by propagation. In this paper, we derive the first global light transport framework that is able to account for these properties of light and, therefore, is fully consistent with Maxwell’s electromagnetic theory. We show that our framework is a generalization of the classical, radiometry-based light transport—prominent in computer graphics—and retains some of its attractive properties. Finally, as a proof of concept, we apply the presented framework to a few practical problems in rendering and validate against well-studied methods in optics.

References:


    1. Thomas Auzinger, Wolfgang Heidrich, and Bernd Bickel. 2018. Computational design of nanostructural color for additive manufacturing. ACM Transactions on Graphics 37, 4 (Aug 2018), 1–16. Google ScholarDigital Library
    2. Chen Bar, Marina Alterman, Ioannis Gkioulekas, and Anat Levin. 2019. A Monte Carlo framework for rendering speckle statistics in scattering media. ACM Transactions on Graphics 38, 4 (Jul 2019), 1–22. Google ScholarDigital Library
    3. Chen Bar, Ioannis Gkioulekas, and Anat Levin. 2020. Rendering near-field speckle statistics in scattering media. ACM Transactions on Graphics 39, 6 (Nov 2020), 1–18. Google ScholarDigital Library
    4. Laurent Belcour and Pascal Barla. 2017. A Practical Extension to Microfacet Theory for the Modeling of Varying Iridescence. ACM Trans. Graph. 36, 4, Article 65 (July 2017), 14 pages. Google ScholarDigital Library
    5. Max Born and Emil Wolf. 1999. Principles of optics : electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press, Cambridge New York.Google Scholar
    6. Rémi Carminati and Jean-Jacques Greffet. 1999. Near-Field Effects in Spatial Coherence of Thermal Sources. Phys. Rev. Lett. 82 (Feb 1999), 1660–1663. Issue 8. Google ScholarCross Ref
    7. S Chandrasekhar. 1960. Radiative transfer. Dover Publications, New York.Google Scholar
    8. Mikhail Charnotskii. 2019. Coherence of radiation from incoherent sources: I Sources on a sphere and far-field conditions. Journal of the Optical Society of America A 36, 8 (Jul 2019), 1433. Google ScholarCross Ref
    9. E. L. Church, H. A. Jenkinson, and J. M. Zavada. 1977. Measurement of the Finish of Diamond-Turned Metal Surfaces By Differential Light Scattering. Optical Engineering 16, 4 (Aug 1977). Google ScholarCross Ref
    10. Tom Cuypers, Tom Haber, Philippe Bekaert, Se Baek Oh, and Ramesh Raskar. 2012. Reflectance model for diffraction. ACM Transactions on Graphics 31, 5 (Aug 2012), 1–11. Google ScholarDigital Library
    11. D. S. Dhillon, J. Teyssier, M. Single, I. Gaponenko, M. C. Milinkovitch, and M. Zwicker. 2014. Interactive Diffraction from Biological Nanostructures. Computer Graphics Forum 33, 8 (2014), 177–188. Google ScholarDigital Library
    12. V. Falster, A. Jarabo, and J. R. Frisvad. 2020. Computing the Bidirectional Scattering of a Microstructure Using Scalar Diffraction Theory and Path Tracing. Computer Graphics Forum 39, 7 (Oct 2020), 231–242. Google ScholarCross Ref
    13. Ari T. Friberg. 1979. On the existence of a radiance function for finite planar sources of arbitrary states of coherence. Journal of the Optical Society of America 69, 1 (Jan 1979), 192. Google ScholarCross Ref
    14. Ioannis Gkioulekas, Anat Levin, Frédo Durand, and Todd Zickler. 2015. Micron-scale light transport decomposition using interferometry. ACM Transactions on Graphics 34, 4 (Jul 2015), 1–14. Google ScholarDigital Library
    15. Joseph Goodman. 2015. Statistical optics. John Wiley & Sons Inc, Hoboken, New Jersey.Google Scholar
    16. Ibón Guillén, Julio Marco, Diego Gutierrez, Wenzel Jakob, and Adrian Jarabo. 2020. A General Framework for Pearlescent Materials. ACM Transactions on Graphics 39, 6Google ScholarDigital Library
    17. (2020). Google ScholarDigital Library
    18. M.V. Guryev. 2012. Detailed description of spontaneous emission. Journal of Modern Optics 59, 14 (Aug 2012), 1278–1282. Google ScholarCross Ref
    19. Stephane Guy and Cyril Soler. 2004. Graphics gems revisited. In ACM SIGGRAPH 2004 Papers on – SIGGRAPH ’04. ACM Press. Google ScholarDigital Library
    20. Nicolas Holzschuch and Romain Pacanowski. 2017. A Two-scale Microfacet Reflectance Model Combining Reflection and Diffraction. ACM Trans. Graph. 36, 4, Article 66 (July 2017), 12 pages. Google ScholarDigital Library
    21. Adrian Jarabo, Julio Marco, Adolfo Muñoz, Raul Buisan, Wojciech Jarosz, and Diego Gutierrez. 2014. A framework for transient rendering. ACM Transactions on Graphics 33, 6 (Nov 2014), 1–10. Google ScholarDigital Library
    22. James T. Kajiya. 1986. The rendering equation. In Proceedings of the 13th annual conference on Computer graphics and interactive techniques – SIGGRAPH ’86. ACM Press. Google ScholarDigital Library
    23. Tom Kneiphof, Tim Golla, and Reinhard Klein. 2019. Real-time Image-based Lighting of Microfacet BRDFs with Varying Iridescence. Computer Graphics Forum 38, 4 (2019), 77–85. Google ScholarCross Ref
    24. Matias Koivurova, Henri Partanen, Jari Turunen, and Ari T. Friberg. 2017. Grating interferometer for light-efficient spatial coherence measurement of arbitrary sources. Applied Optics 56, 18 (Jun 2017), 5216. Google ScholarCross Ref
    25. Alankar Kotwal, Anat Levin, and Ioannis Gkioulekas. 2020. Interferometric transmission probing with coded mutual intensity. ACM Transactions on Graphics 39, 4 (Jul 2020). Google ScholarDigital Library
    26. Andrey Krywonos. 2006. Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction. Ph.D. Dissertation. University of Central Florida.Google Scholar
    27. Anat Levin, Daniel Glasner, Ying Xiong, Frédo Durand, William Freeman, Wojciech Matusik, and Todd Zickler. 2013. Fabricating BRDFs at high spatial resolution using wave optics. ACM Transactions on Graphics 32, 4 (Jul 2013), 1–14. Google ScholarDigital Library
    28. Eugene Lommel. 1889. Die Photometrie der diffusen Zurückwerfung. Annalen der Physik 272, 2 (1889), 473–502.Google ScholarCross Ref
    29. Heylal Mashaal, Alex Goldstein, Daniel Feuermann, and Jeffrey M. Gordon. 2012. First direct measurement of the spatial coherence of sunlight. Optics Letters 37, 17 (Aug 2012), 3516. Google ScholarCross Ref
    30. Anthony B Murphy and Eugene Tam. 2014. Thermodynamic properties and transport coefficients of arc lamp plasmas: argon, krypton and xenon. Journal of Physics D: Applied Physics 47, 29 (Jun 2014), 295202. Google ScholarCross Ref
    31. A. Musbach, G. W. Meyer, F. Reitich, and S. H. Oh. 2013. Full Wave Modelling of Light Propagation and Reflection. Computer Graphics Forum 32, 6 (Feb 2013), 24–37. Google ScholarDigital Library
    32. Se Baek Oh, Sriram Kashyap, Rohit Garg, Sharat Chandran, and Ramesh Raskar. 2010. Rendering Wave Effects with Augmented Light Field. Computer Graphics Forum 29, 2 (May 2010), 507–516. Google ScholarCross Ref
    33. George Ruck. 1970. Radar cross section handbook. Plenum Press, New York.Google Scholar
    34. Iman Sadeghi, Adolfo Munoz, Philip Laven, Wojciech Jarosz, Francisco Seron, Diego Gutierrez, and Henrik Wann Jensen. 2012. Physically-based simulation of rainbows. ACM Transactions on Graphics 31, 1 (Jan 2012), 1–12. Google ScholarDigital Library
    35. Jos Stam. 1999. Diffraction shaders. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques – SIGGRAPH ’99. ACM Press. Google ScholarDigital Library
    36. Shlomi Steinberg. 2019. Analytic Spectral Integration of Birefringence-Induced Iridescence. Computer Graphics Forum 38, 4 (Jul 2019), 97–110. Google ScholarCross Ref
    37. Shlomi Steinberg. 2020. Accurate Rendering of Liquid-Crystals and Inhomogeneous Optically Anisotropic Media. ACM Transactions on Graphics 39, 3 (Jun 2020), 1–23. Google ScholarDigital Library
    38. Shlomi Steinberg and Lingqi Yan. 2021. Rendering of Subjective Speckle Formed by Rough Statistical Surfaces. ACM Transactions on Graphics (2021), To appear.Google Scholar
    39. John Stover. 2012. Optical scattering : measurement and analysis. SPIE Press, Bellingham, Wash. (1000 20th St. Bellingham WA 98225-6705 USA.Google Scholar
    40. Petr Sysel and Pavel Rajmic. 2012. Goertzel algorithm generalized to non-integer multiples of fundamental frequency. EURASIP Journal on Advances in Signal Processing 2012, 1 (Mar 2012). Google ScholarCross Ref
    41. Antoine Toisoul, Daljit Singh Dhillon, and Abhijeet Ghosh. 2018. Acquiring Spatially Varying Appearance of Printed Holographic Surfaces. ACM Trans. Graph. 37, 6, Article 272 (Dec. 2018), 16 pages. Google ScholarDigital Library
    42. Antoine Toisoul and Abhijeet Ghosh. 2017. Practical Acquisition and Rendering of Diffraction Effects in Surface Reflectance. ACM Transactions on Graphics 36, 5 (Jul 2017), 1–16. Google ScholarDigital Library
    43. Z. Velinov, S. Werner, and M. B. Hullin. 2018. Real-Time Rendering of Wave-Optical Effects on Scratched Surfaces. Computer Graphics Forum 37, 2 (2018), 123–134. Google ScholarCross Ref
    44. A Walther. 1968. Radiometry and coherence. JOSA 58, 9 (1968), 1256–1259. Google ScholarCross Ref
    45. Sebastian Werner, Zdravko Velinov, Wenzel Jakob, and Matthias Hullin. 2017. Scratch Iridescence: Wave-Optical Rendering of Diffractive Surface Structure. Transactions on Graphics (Proceedings of SIGGRAPH Asia) 36, 6 (Nov. 2017). Google ScholarDigital Library
    46. Alexander Wilkie, Robert F. Tobler, and Werner Purgathofer. 2001. Combined Rendering of Polarization and Fluorescence Effects. Springer Vienna, 197–204. Google ScholarCross Ref
    47. Emil Wolf. 1978. Coherence and radiometry. JOSA 68, 1 (1978), 6–17. Google ScholarCross Ref
    48. Emil Wolf. 1982. New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources. J. Opt. Soc. Am. 72, 3 (Mar 1982), 343–351. Google ScholarCross Ref
    49. Emil Wolf. 2007. Introduction to the theory of coherence and polarization of light. Cambridge University Press, Cambridge.Google Scholar
    50. Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi. 2018. Rendering Specular Microgeometry with Wave Optics. ACM Trans. Graph. 37, 4, Article 75 (July 2018), 10 pages. Google ScholarDigital Library
    51. Andrew Zangwill. 2013. Modern electrodynamics. Cambridge University Press, Cambridge.Google Scholar


ACM Digital Library Publication: