“A fitted radiance and attenuation model for realistic atmospheres” by Wilkie, Vévoda, Bashford-Rogers, Hosek, Iser, et al. …

  • ©Alexander Wilkie, Petr Vévoda, Thomas Bashford-Rogers, Lukas Hosek, Tomáš Iser, Monika Kolářová, Tobias Rittig, and Jaroslav Křivánek




    A fitted radiance and attenuation model for realistic atmospheres



    We present a fitted model of sky dome radiance and attenuation for realistic terrestrial atmospheres. Using scatterer distribution data from atmospheric measurement data, our model considerably improves on the visual realism of existing analytical clear sky models, as well as of interactive methods that are based on approximating atmospheric light transport. We also provide features not found in fitted models so far: radiance patterns for post-sunset conditions, in-scattered radiance and attenuation values for finite viewing distances, an observer altitude resolved model that includes downward-looking viewing directions, as well as polarisation information. We introduce a fully spherical model for in-scattered radiance that replaces the family of hemispherical functions originally introduced by Perez et al., and which was extended for several subsequent analytical models: our model relies on reference image compression via tensor decomposition instead.


    1. G. Anderson, Shepard Clough, F. Kneizys, J. Chetwynd, and Eric Shettle. 1986. AFGL Atmospheric Constituent Profiles (0.120km). (05 1986), 46.Google Scholar
    2. Barry A. Bodhaine, Norman B. Wood, Ellsworth G. Dutton, and James R. Slusser. 1999. On Rayleigh Optical Depth Calculations. Journal of Atmospheric and Oceanic Technology 16, 11 (1999), 1854–1861. <1854:ORODC>2.0.CO;2 arXiv:https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2 Google ScholarCross Ref
    3. Eric Bruneton. 2016. A qualitative and quantitative evaluation of 8 clear sky models. IEEE transactions on visualization and computer graphics 23, 12 (2016), 2641–2655.Google Scholar
    4. Eric Bruneton and Fabrice Neyret. 2008. Precomputed atmospheric scattering. In Computer graphics forum, Vol. 27. Wiley Online Library, 1079–1086.Google Scholar
    5. Chaos Czech a.s. 2021. Corona Renderer. https://corona-renderer.com/.Google Scholar
    6. C. Emde, R. Buras-Schnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro. 2016. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geoscientific Model Development 9, 5 (2016), 1647–1672. Google ScholarCross Ref
    7. V. Gorshelev, A. Serdyuchenko, M. Weber, W. Chehade, and J. P. Burrows. 2014. High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K. Atmospheric Measurement Techniques 7, 2 (2014), 609–624. Google ScholarCross Ref
    8. David Guimera, Diego Gutierrez, and Adrián Jarabo. 2018. A Physically-Based Spatio-Temporal Sky Model. In Spanish Computer Graphics Conference (CEIG), Ignacio García-Fernández and Carlos Ureña (Eds.). The Eurographics Association. Google ScholarDigital Library
    9. Jörg Haber, Marcus Magnor, and Hans-Peter Seidel. 2005. Physically-based simulation of twilight phenomena. ACM Transactions on Graphics 24 (October 2005), 1353–1373. Issue 4. Google ScholarDigital Library
    10. Miles Hansard. 2019. Fast Synthesis of Atmospheric Image Effects. In European Conference on Visual Media Production (London, United Kingdom) (CVMP ’19). Association for Computing Machinery, New York, NY, USA, Article 13, 10 pages. Google ScholarDigital Library
    11. L. G. Henyey and J. L. Greenstein. 1941. Diffuse radiation in the Galaxy. Astrophysical Journal 93 (Jan 1941), 70–83. Google ScholarCross Ref
    12. M. Hess, P. Koepke, and I. Schult. 1998. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bulletin of the American Meteorological Society 79, 5 (1998), 831–844. <0831:OPOAAC>2.0.CO;2 arXiv:https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2 Google ScholarCross Ref
    13. Sébastien Hillaire. 2020. A Scalable and Production Ready Sky and Atmosphere Rendering Technique. Comput. Graph. Forum 39, 4 (2020), 13–22.Google ScholarCross Ref
    14. Lukas Hošek and Alexander Wilkie. 2012. An analytic model for full spectral sky-dome radiance. ACM Trans. Graph 31, 4 (2012), 95. Google ScholarDigital Library
    15. Lukas Hošek and Alexander Wilkie. 2013. Adding a solar radiance function to the Hošek-Wilkie skylight model. IEEE Computer Graphics and Applications 33, 3 (2013), 44–52. Google ScholarDigital Library
    16. E. O. Hulburt. 1953. Explanation of the brightness and color of the sky, particularly the twilight sky. J. Opt. Soc. Am. 43 (1953), 113–118.Google ScholarCross Ref
    17. AK Kaifel, M Felder, C DeClercq, and J-C Lambert. 2012. New dynamic NNORSY ozone profile climatology. Atmospheric Measurement Techniques Discussions 5, 1 (2012), 775–812.Google Scholar
    18. Joseph T. Kider, Jr., Daniel Knowlton, Jeremy Newlin, Yining Karl Li, and Donald P. Greenberg. 2014. A Framework for the Experimental Comparison of Solar and Skydome Illumination. ACM Trans. Graph. 33, 6, Article 180 (Nov. 2014), 12 pages. Google ScholarDigital Library
    19. T. Kolda and B. Bader. 2009. Tensor Decompositions and Applications. SIAM Rev. 51, 3 (2009), 455–500.Google ScholarDigital Library
    20. Peter Kutz. 2013. Sky Renderer project blog. http://skyrenderer.blogspot.com. Accessed: 2015-12-31.Google Scholar
    21. Raymond L. Lee, Wolfgang Meyer, and Goetz Hoeppe. 2011. Atmospheric ozone and colors of the Antarctic twilight sky. Applied Optics 50, 28 (2011), 162–171.Google ScholarCross Ref
    22. Christian Mätzler. 2002. MATLAB Functions for Mie Scattering and Absorption. Research report 2002-8, Institut für Angewandte Physik, Universität Bern, Switzerland (2002). http://www.iap.unibe.ch/publications/download/201/en/Google Scholar
    23. Bailey Miller, Iliyan Georgiev, and Wojciech Jarosz. 2019. A null-scattering path integral formulation of light transport. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–13.Google ScholarDigital Library
    24. Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A Retargetable Forward and Inverse Renderer. ACM Trans. Graph. 38, 6, Article 203 (Nov. 2019), 17 pages. Google ScholarDigital Library
    25. Tomoyuki Nishita, Yoshinori Dobashi, and Eihachiro Nakamae. 1996. Display of clouds taking into account multiple anisotropic scattering and sky light. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. 379–386.Google ScholarDigital Library
    26. Tomoyuki Nishita, Takao Sirai, Katsumi Tadamura, and Eihachiro Nakamae. 1993. Display of the earth taking into account atmospheric scattering. In Proceedings of the 20th annual conference on Computer graphics and interactive techniques (Anaheim, CA) (SIGGRAPH ’93). ACM, New York, NY, USA, 175–182. Google ScholarDigital Library
    27. S O’Neal. 2005. Accurate Atmospheric Scattering. GPU Gems 2.Google Scholar
    28. R. Perez, R. Seals, and J. Michalsky. 1993. All-weather model for sky luminance distribution-Preliminary configuration and validation. Solar Energy 50, 3 (1993), 235 — 245. Google ScholarCross Ref
    29. Matt Pharr and Greg Humphreys. 2010. Physically Based Rendering, Second Edition: From Theory To Implementation (2nd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.Google ScholarDigital Library
    30. A. J. Preetham, Peter Shirley, and Brian Smits. 1999. A practical analytic model for daylight. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 91–100. Google ScholarDigital Library
    31. Chandrasekhar Subrahmanyan. 1960. Radiative transfer.Google Scholar
    32. HC van de Hulst. 1957. Light scattering by small particles. Dover Publications.Google Scholar
    33. Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Ph.D. Dissertation. Stanford University, Stanford, CA, USA.Google ScholarDigital Library
    34. Xin Wang, Jun Gao, Zhiguo Fan, and Nicholas W Roberts. 2016. An analytical model for the celestial distribution of polarized light, accounting for polarization singularities, wavelength and atmospheric turbidity. Journal of Optics 18, 6 (2016), 065601. http://stacks.iop.org/2040-8986/18/i=6/a=065601Google ScholarCross Ref
    35. Alexander Wilkie. 2018. The Advanced Rendering Toolkit. http://cgg.mff.cuni.cz/ART.Google Scholar
    36. Alexander Wilkie, Sehera Nawaz, Marc Droske, Andrea Weidlich, and Johannes Hanika. 2014. Hero wavelength spectral sampling. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 123–131.Google Scholar
    37. Alexander Wilkie, Christiane Ulbricht, Robert F. Tobler, Georg Zotti, and Werner Purgathofer. 2004. An Analytical Model for Skylight Polarization. In Rendering Techniques, Alexander Keller and Henrik Wann Jensen (Eds.). Eurographics Association, 387–398.Google Scholar

ACM Digital Library Publication: