“3D printing spatially varying color and translucency” by Brunton, Arikan, Tanksale and Urban

  • ©Alan Brunton, Can Ates Arikan, Tejas Madan Tanksale, and Philipp Urban

Conference:


Type:


Entry Number: 157

Session Title:

    Fabrication for Color and Motion

Title:

    3D printing spatially varying color and translucency

Moderator(s):



Presenter(s)/Author(s):



Abstract:


    We present an efficient and scalable pipeline for fabricating full-colored objects with spatially-varying translucency from practical and accessible input data via multi-material 3D printing. Observing that the costs associated with BSSRDF measurement and processing are high, the range of 3D printable BSSRDFs are severely limited, and that the human visual system relies only on simple high-level cues to perceive translucency, we propose a method based on reproducing perceptual translucency cues. The input to our pipeline is an RGBA signal defined on the surface of an object, making our approach accessible and practical for designers. We propose a framework for extending standard color management and profiling to combined color and translucency management using a gamut correspondence strategy we call opaque relative processing. We present an efficient streaming method to compute voxel-level material arrangements, achieving both realistic reproduction of measured translucent materials and artistic effects involving multiple fully or partially transparent geometries.

References:


    1. 3DSystems. 2014. Projet 860Pro. http://www.3dsystems.com/3d-printers/professional/projet-860pro. (2014).Google Scholar
    2. Marc Alexa, Kristian Hildebrand, and Sylvain Lefebvre. 2017. Optimal Discrete Slicing. ACM TOG 36, 1, Article 12 (Jan. 2017), 16 pages. Google ScholarDigital Library
    3. C. Arikan, A. Brunton, T. Tanksale, and P. Urban. 2015. Color-Managed 3D-Printing with highly Translucent Printing Materials. In SPIE/IS&T Electronic Imaging Conference. San Francisco.Google Scholar
    4. V. Babaei, K. Vidimče, M. Foshey A. Kaspar, P. Didyk, and W. Matusik. 2017. Color contoning for 3D printing. ACM TOG (Proc. SIGGRAPH) 36, 4 (2017), 124:1–124:15. Google ScholarDigital Library
    5. Barbieri. 2015. Spectro LFP qb. https://www.barbierielectronic.com/en/products/spectrophotometer/spectro-lfp-qb/91-869.html. (2015).Google Scholar
    6. A. Brunton, C. Arikan, and P. Urban. 2015. Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials. ACM TOG 35, 1 (December 2015), 4:1–4:13. Google ScholarDigital Library
    7. Canon. 2014. Canon 5D Mark3. http://www.usa.canon.com/cusa/professional/products/professional_cameras/digital_slr_cameras/eos_5d_mark_iii. (2014).Google Scholar
    8. D. Chen, D.I.W. Levin, P. Didyk, P. Sitthi-Armorn, and W. Matusik. 2013. Spec2Fab: A Reducer-Tuner Model for Translating Specifications to 3D Prints. ACM TOG (Proc. SIGGRAPH) 32, 4 (2013). Google ScholarDigital Library
    9. M. Detrixhe, F. Gibou, and C. Min. 2013. A parallel fast sweeping method for the Eikonal equation. J. Comput. Phys. 237 (2013), 46–55. Google ScholarDigital Library
    10. Y. Dong, J. Wang, F. Pellacini, X. Tong, and B. Guo. 2010. Fabricating Spatially-Varying Subsurface Scattering. ACM TOG (Proc. SIGGRAPH) 29, 4 (2010). Google ScholarDigital Library
    11. O. Elek, D. Sumin, R. Zhang, T. Weyrich, K. Myszkowski, B. Bickel, A. Wilkie, and J. Křivánek. 2017. Scattering-aware Texture Reproduction for 3D Printing. ACM TOG (Proc. of SIGGRAPH Asia) 36, 6 (2017), 241:1–241:15. Google ScholarDigital Library
    12. M. D. Fairchild. 2005. Color Appearance Models (2 ed.). John Wiley & Sons, inc., West Sussex, England.Google Scholar
    13. P.F. Felzenzwalb and D.P. Huttenlocher. 2012. Distance Transforms of Sampled Functions. Theory of Computing 8, 19 (2012), 415–428.Google ScholarCross Ref
    14. R. W. Fleming and H.H. Bülthoff. 2005. Low-level image cues in the perception of translucent materials. ACM TAP 2, 3 (2005), 346–382. Google ScholarDigital Library
    15. 1. Gkioulekas, B. Xiao, S. Zhao, E. H. Adelson, T Zickler, and K. Bala. 2013. Understanding the role of phase function in translucent appearance. ACM TOG 32, 5 (2013), 147:1–147:19. Google ScholarDigital Library
    16. M. Goesele, H. Lensch, J. Lang, C. Fuchs, and H.P. Seidel. 2004. DISCO: acquisition of translucent objects. In ACM TOG (Proc. SIGGRAPH), Vol. 23. ACM, 835–844. Google ScholarDigital Library
    17. M. Hašan, M. Fuchs, W. Matusik, H. Pfister, and S. Rusinkiewicz. 2010. Physical Reproduction of Materials with Specified Subsurface Scattering. ACM TOG (Proc. SIGGRAPH) 29, 3 (2010). Google ScholarDigital Library
    18. HP. 2018. HP Jet Fusion. http://www8.hp.com/us/en/printers/3d-printers/3dcolorprint.html. (2018).Google Scholar
    19. R. S. Hunter and R. W. Harold. 1987. The Measurement of Appearance (2 ed.). John Wiley Sons.Google Scholar
    20. Image Engineering. 2015. CAL1 Calibration Light Source. https://www.image-engineering.de/products/equipment/illumination-devices/379-call. (2015).Google Scholar
    21. H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan. 2001. A practical model for subsurface light transport. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (ACM-SIGGRAPH). ACM, 511–518. Google ScholarDigital Library
    22. M. W. Jones, J. A. Baerentzen, and M. Sramek. 2006. 3D Distance Fields: A Survey of Techniques and Applications. IEEE TVCG 12, 4 (2006). Google ScholarDigital Library
    23. P. Kubelka and F. Munk. 1931. Ein Beitrag zur Optik der Farbanstriche. Zeitschrifi für Technische Physik 12 (1931), 593–601.Google Scholar
    24. I. Lissner, J. Preiss, P. Urban, M. Scheller Lichtenauer, and P. Zolliker. 2013. Image-Difference Prediction: From Grayscale to Color. IEEE TIP 22, 2 (2013), 435–446. Google ScholarDigital Library
    25. I. Lissner and P. Urban. 2012. Toward a Unified Color Space for Perception-Based Image Processing. IEEE TIP 21, 3 (2012), 1153–1168. Google ScholarDigital Library
    26. F. Liu and Y.J. Kim. 2014. Exact and Adaptive Signed Distance Field Computation for Rigid and Deformable Models on GPUs. IEEE TVCG 20, 5 (2014), 714–725. Google ScholarDigital Library
    27. MCor Technologies. 2014. Iris, http://mcortechnologies.com/3d-printers/iris/. (2014).Google Scholar
    28. P. Morovič, J. Morovič, I. Tastl, M. Gottwals, and G. Dispoto. 2017. HANS3D: A Multi-Material, Volumetric, Voxel-By-Voxel Content Processing Pipeline for Color and Beyond. Color and Imaging Conference 2017, 25 (2017), 219–225.Google Scholar
    29. I. Motoyoshi. 2010. Highlight-shading relationship as a cue for the perception of translucent and transparent materials. Journal of vision 10, 9 (2010), 6–6.Google ScholarCross Ref
    30. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. 1977. Geometrical considerations and nomenclature for reflectance. United States. National Bureau of Standards.Google Scholar
    31. S. E. Palmer. 1999. Vision science: Photons to phenomenology. MIT press.Google Scholar
    32. D. Panozzo, O. Diamanti, S. Paris, M. Tarini, E. Sorkine, and O. Sorkine-Hornung. 2015. Texture mapping real-world objects with hydrographies. Computer Graphics Forum 34, 5 (2015), 65–76.Google ScholarDigital Library
    33. M. Papas, C. Regg, W. Jarosz, B. Bickel, P. Jackson, W. Matusik, S. Marschner, and M. Gross. 2013. Fabricating Translucent Materials using Continuous Pigment Mixtures. ACM TOG (Proc. SIGGRAPH) 32, 4 (2013). Google ScholarDigital Library
    34. P. Peers, K. vom Berge, W. Matusik, R. Ramamoorthi, J. Lawrence, S. Rusinkiewicz, and P. Dutré. 2006. A compact factored representation of heterogeneous subsurface scattering. In ACM TOG (Proc. SIGGRAPH), Vol. 25. ACM, 746–753. Google ScholarDigital Library
    35. T. Pereira, S. Rusinkiewicz, and W. Matusik. 2014. Computational Light Routing: 3D Printed Optical Fibers for Sensing and Display. ACM TOG 33, 3 (2014). Google ScholarDigital Library
    36. Pixelogic. 2017. ZBrush. http://pixologic.com/. (2017).Google Scholar
    37. R. Rolleston and R. Balasubramanian. 1993. Accuracy of Various Types of Neugebauer Model. In IS&T/SID. Scottsdale Ariz., 32–36.Google Scholar
    38. C. Schüller, D. Panozzo, A. Grundhöfer, H. Zimmer, E. Sorkine, and O. Sorkine-Hornung. 2016. Computational Thermoforming. ACM TOG (Proc. SIGGRAPH) 35, 4 (2016). Google ScholarDigital Library
    39. M. Schwarz and H.-P. Seidel. 2010. Fast Parallel Surface and Solid Voxelization on GPUs. ACM TOG (Proc. SIGGRAPH Asia) 29, 6 (2010). Google ScholarDigital Library
    40. J.A. Sethian. 1999. Fast Marching Methods. SIAM Rev. 41, 2 (1999), 199–235. Google ScholarDigital Library
    41. Y. Song, X. Tong, F. Pellacini, and P. Peers. 2009. SubEdit: A Representation for Editing Measured Heterogeneous Subsurface Scattering. ACM TOG (Proc. SIGGRAPH) (2009). Google ScholarDigital Library
    42. Stratasys. 2016. J750. http://www.stratasys.com/3d-printers/production-series/stratasys-j750. (2016).Google Scholar
    43. Stratasys. 2017. GrabCAD Voxel Print, http://www.stratasys.com/software. (2017).Google Scholar
    44. A. Sud, N. Govindaraju, R. Gayle, and D. Manocha. 2006. Interactive 3D Distance Field Computation using Linear Factorization. In Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games (I3D). 117–124. Google ScholarDigital Library
    45. X. Tong, J. Wang, S. Lin, B. Guo, and H.Y. Shum. 2005. Modeling and rendering of quasi-homogeneous materials. In ACM TOG (Proc. SIGGRAPH), Vol. 24. ACM, 1054–1061. Google ScholarDigital Library
    46. P. Urban, T. M. Tanksale, A. Brunton, B. Minh Vu, and S. Nakauchi. 2017. Redefining A in RGBA: Towards a Standard for Graphical 3D Printing. CoRR abs/1710.00546 (2017). arXiv:1710.00546 http://arxiv.org/abs/1710.00546Google Scholar
    47. K. Vidimče, S.-P. Wang, J. Ragan-Kelley, and W. Matusik. 2013. OpenFab: A Programmable Pipeline for Multi-Material Fabrication. ACM TOG (Proc. SIGGRAPH) 32, 4 (2013). Google ScholarDigital Library
    48. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality assessment: From error measurement to structural similarity. IEEE TIP 13, 4 (2004), 600–612. Google ScholarDigital Library
    49. K.D.D. Willis, E. Brockmeyer, S.E. Hudson, and I. Poupyrev. 2012. Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices. In ACM UIST. Google ScholarDigital Library
    50. D. R. Wyble and R. S. Berns. 2000. A Critical Review of Spectral Models Applied to Binary Color Printing. Color Research and Application 25, 1 (2000), 4–19.Google ScholarCross Ref
    51. B. Xiao, B. Walter, I. Gkioulekas, T Zickler, E. H. Adelson, and K. Bala. 2014. Looking against the light: How perception of translucency depends on lighting direction. Journal of vision 14, 3 (2014), 17–17.Google ScholarCross Ref
    52. XYZ Printing. 2017. Da Vinci Color. https://www.xyzprinting.com/en-GB/product/davinci-color. (2017).Google Scholar
    53. K. Yoshida, N. Komeda, N. Ojima, and K. Iwata. 2011. Simple and effective method for measuring translucency using edge loss: optimization of measurement conditions and applications for skin. Journal of biomedical optics 16, 11 (2011), 117003–1170038.Google ScholarCross Ref
    54. H. Zhao. 2004. A Fast Sweeping Method for Eikonal Equations. Math. Comp. 74, 250 (2004), 603–627.Google ScholarCross Ref
    55. H. Zhao. 2007. Parallel Implementations of the Fast Sweeping Method. Journal of Computational Mathematics 25, 4 (2007), 421–429.Google Scholar


ACM Digital Library Publication: