“Shape dithering for 3D printing” by Morsy, Morsy, Brunton and Urban
Conference:
Type(s):
Title:
- Shape dithering for 3D printing
Presenter(s)/Author(s):
Abstract:
We present an efficient, purely geometric, algorithmic, and parameter free approach to improve surface quality and accuracy in voxel-controlled 3D printing by counteracting quantization artifacts. Such artifacts arise due to the discrete voxel sampling of the continuous shape used to control the 3D printer, and are characterized by low-frequency geometric patterns on surfaces of any orientation. They are visually disturbing, particularly on small prints or smooth surfaces, and adversely affect the fatigue behavior of printed parts. We use implicit shape dithering, displacing the part’s signed distance field with a high-frequent signal whose amplitude is adapted to the (anisotropic) print resolution. We expand the reverse generalized Fourier slice theorem by shear transforms, which we leverage to optimize a 3D blue-noise mask to generate the anisotropic dither signal. As a point process it is efficient and does not adversely affect 3D halftoning. We evaluate our approach for efficiency, geometric accuracy and show its advantages over the state of the art.
References:
1. 3D Printing Industry. 2020. Mimaki 3DUJ-2207 UV-LED 3D Printer. https://3dprintingindustry.com/news/mimaki-opens-up-full-3d-color-printing-for-less-than-e40k-with-3duj-2207-uv-led-3d-printer-178953/.Google Scholar
2. A.U. Agar and J.P. Allebach. 2005. Model-based color halftoning using direct binary search. Image Processing, IEEE Transactions on 14, 12 (2005), 1945–1959.Google ScholarDigital Library
3. M. Alexa, K. Hildebrand, and S. Lefebvre. 2017. Optimal Discrete Slicing. ACM TOG 36, 1, Article 12 (Jan. 2017), 16 pages. Google ScholarDigital Library
4. M. Alexa and J.E. Kyprianidis. 2015. Error diffusion on meshes. Computers and Graphics (Proc. SMI 2014) 46 (2015), 336–344.Google Scholar
5. T. Auzinger, W. Heidrich, and B. Bickel. 2018. Computational design of nanostructural color for additive manufacturing. ACM TOG (Proc. SIGGRAPH) 37, 4 (2018), 1–16.Google ScholarDigital Library
6. T. Baar, S. Samadzadegan, H. Brettel, P. Urban, and M. V. Ortiz Segovia. 2014. Printing gloss effects in a 2.5 D system. In IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, 90180M–90180M.Google Scholar
7. V. Babaei, K. Vidimče, M. Foshey, A. Kaspar, P. Didyk, and W. Matusik. 2017. Color contoning for 3D printing. ACM TOG (Proc. SIGGRAPH) 36, 124 (2017). Issue 4.Google Scholar
8. B. E. Bayer. 1973. An optimum method for two-level rendition of continuous-tone pictures. In IEEE Intl. Conf. on Comm. Seattle, WA, 11–15.Google Scholar
9. A. Brunton and L. Abu Rmaileh. 2021. Displaced Signed Distance Fields for Additive Manufacturing. ACM TOG (Proc. SIGGRAPH) 40, 4 (2021).Google Scholar
10. A. Brunton, C. A. Arikan, T. M. Tanksale, and P. Urban. 2018. 3D Printing Spatially Varying Color and Translucency. ACM TOG (Proc. SIGGRAPH) 37, 4 (2018), 157:1–157:13.Google Scholar
11. A. Brunton, C. A. Arikan, and P. Urban. 2015. Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials. ACM TOG 35, 1 (2015), 4.Google ScholarDigital Library
12. J. Chang, B. Alain, and V. Ostromoukhov. 2009. Structure-Aware Error Diffusion. ACM TOG (Proc. SIGGRAPH Asia) 28, 5 (2009), 162:1–162:8.Google Scholar
13. W. Cho, E.M. Sachs, N. M. Patrikalakis, and D. E. Troxel. 2003. A dithering algorithm for local composition control with three-dimensional printing. CAD 35, 9 (2003), 851–867.Google ScholarCross Ref
14. Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh Processing Tool. In Eurographics Italian Chapter Conference, Vittorio Scarano, Rosario De Chiara, and Ugo Erra (Eds.). The Eurographics Association. Google ScholarCross Ref
15. D. Cohen-Or and A. Kaufman. 1995. Fundamentals of Surface Voxelization. Graphical Models and Image Processing 57, 6 (November 1995), 453–461.Google ScholarDigital Library
16. Y. Dong, J. Wang, F. Pellacini, X. Tong, and B. Guo. 2010. Fabricating spatially-varying subsurface scattering. ACM TOG (Proc. SIGGRAPH) 29, 4 (2010), 62:1–62:10.Google Scholar
17. DP Polar. 2020. AMpolar i2. https://www.dppolar.de/en/3d-printer.Google Scholar
18. O. Elek, D. Sumin, R. Zhang, T. Weyrich, K. Myszkowski, B. Bickel, A. Wilkie, and J. Křivánek. 2017. Scattering-aware Texture Reproduction for 3D Printing. ACM TOG (Proc. of SIGGRAPH Asia) 36, 6 (2017), 241:1–241:15.Google Scholar
19. R.W. Floyd and L. Steinberg. 1976. An adaptive algorithm for spatial grey scale. In Proceedings of the Society of Information Display. SID, 75–77.Google Scholar
20. M. Hašan, M. Fuchs, W. Matusik, H. Pfister, and S. Rusinkiewicz. 2010. Physical reproduction of materials with specified subsurface scattering. ACM TOG (Proc. SIGGRAPH) 29, 4 (2010), 61:1–61:9.Google Scholar
21. Fraunhofer IGD. 2020. Cuttlefish Version 2020.09. https://www.cuttlefish.de/.Google Scholar
22. Intel. 2020. Intel Threading Building Blocks. https://software.intel.com/content/www/us/en/develop/tools/threading-building-blocks.html.Google Scholar
23. A. Kampker, K. Kreisköther, and C. Reinders. 2017. Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments. International Journal of Materials and Metallurgical Engineering 11, 3 (2017), 242 — 249. https://publications.waset.org/vol/123Google Scholar
24. E. Kritchman. 2010. Method for printing of three-dimensional objects. US Patent 7,658,976.Google Scholar
25. Ares Lagae and George Drettakis. 2011. Filtering solid Gabor noise. ACM Transactions on Graphics (TOG) 30, 4 (2011), 1–6.Google ScholarDigital Library
26. Y. Lan, Y. Dong, F. Pellacini, and X. Tong. 2013. Bi-scale appearance fabrication. ACM TOG (Proc. SIGGRAPH) 32, 4 (2013), 145–1.Google ScholarDigital Library
27. D.L. Lau, G.R. Arce, and N.C. Gallagher. 1999. Digital halftoning by means of green-noise masks. JOSA A 16, 7 (1999), 1575–1586.Google ScholarCross Ref
28. D. L. Lau and G. R. Arce. 2001. Modern digital halftoning. CRC Press.Google Scholar
29. W.E. Lorensen and H.E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 163–169. Google ScholarDigital Library
30. A. Luongo, V. Falster, M.B. Doest, M.M. Ribo, E.R. Eiríksson, D.B. Pedersen, and J.R. Frisvad. 2020. Microstructure control in 3D printing with digital light processing. 39, 1 (2020), 347–359.Google Scholar
31. T. Malzbender, R. Samadani, S. Scher, A. Crume, D. Dunn, and J. Davis. 2012. Printing reflectance functions. ACM TOG 31, 3 (2012), 1–11.Google ScholarDigital Library
32. W. Matusik, B. Ajdin, J. Gu, J. Lawrence, H. Lensch, F. Pellacini, and S. Rusinkiewicz. 2009. Printing spatially-varying reflectance. In ACM Transactions on Graphics (TOG), Vol. 28. ACM, 128.Google Scholar
33. Mimaki. 2020. 3DUJ-553 3D Printer. https://www.mimakieurope.com/products/3d/3duj-553/.Google Scholar
34. T. Mitsa and K.J. Parker. 1992. Digital halftoning technique using a blue-noise mask. JOSA A 9, 11 (1992), 1920–1929.Google ScholarCross Ref
35. J.P. Moore and C.B. Williams. 2015. Fatigue properties of parts printed by PolyJet material jetting. Rapid Prototyping Journal (2015).Google Scholar
36. P. Morovič, J. Morovič, J. Gondek, and R. Ulichney. 2017a. Direct pattern control halftoning of Neugebauer primaries. IEEE TIP 26, 9 (2017), 4404–4413.Google Scholar
37. P. Morovič, J. Morovič, I. Tastl, M. Gottwals, and G. Dispoto. 2017b. HANS3D: a multi-material, volumetric, voxel-by-voxel content processing pipeline for color and beyond. In Color and Imaging Conference, Vol. 2017. Society for Imaging Science and Technology, 219–225.Google Scholar
38. E. Napadensky. 2014. Method and system for three-dimensional fabrication. US Patent 8,784,723.Google Scholar
39. R. Ng. 2005. Fourier slice photography. ACM TOG (2005), 735–744.Google Scholar
40. A. Orth, K.L. Sampson, K. Ting, J. Boisvert, and C. Paquet. 2021. Correcting ray distortion in tomographic additive manufacturing. Optics Express 29, 7 (Mar 2021), 11037–11054. Google ScholarCross Ref
41. V. Ostromoukhov. 2001. A Simple and Efficient Error-Diffusion Algorithm. In Proc. SIGGRAPH.Google ScholarDigital Library
42. M. Page, G. Obein, C. Boust, and A. Razet. 2017. Adapted modulation transfer function method for characterization and improvement of 3D printed surfaces. Electronic Imaging 2017, 8 (2017), 92–100.Google ScholarCross Ref
43. W.-M. Pang, Y. Qu, T.-T. Wong, D. Cohen-Or, and P.A. Heng. 2008. Structure-aware halftoning. ACM TOG (Proc. SIGGRAPH) 27, 3 (2008), 89.Google ScholarDigital Library
44. C. Peters. 2017. Moments in Graphics: The problem with 3D blue noise. http://momentsingraphics.de/3DBlueNoise.html.Google Scholar
45. M. Piovarči, M. Foshey, V. Babaei, S. Rusinkiewicz, W. Matusik, and P. Didyk. 2020. Towards spatially varying gloss reproduction for 3D printing. ACM TOG (Proc. SIGGRAPH Asia) 39, 6 (2020), 1–13.Google ScholarDigital Library
46. Quantica. 2020. Tech Platform. https://quantica3d.com/technology/.Google Scholar
47. O. Rouiller, B. Bickel, J. Kautz, W. Matusik, and M. Alexa. 2013. 3D-printing spatially varying BRDFs. IEEE CG&A 33, 6 (2013), 48–57.Google Scholar
48. S. Samadzadegan, T. Baar, P. Urban, M.V.O. Segovia, and J. Blahová. 2015. Controlling colour-printed gloss by varnish-halftones. In Measuring, Modeling, and Reproducing Material Appearance 2015, Vol. 9398. International Society for Optics and Photonics, 93980V.Google Scholar
49. Stratasys. 2020. J8 Series 3D Printers. https://www.stratasys.com/3d-printers/j8-series.Google Scholar
50. D. Sumin, T. Rittig, Babaei V, T. Nindel, A. Wilkie, P. Didyk, B. Bickel, J. KR, ivánek, K. Myszkowski, and T. Weyrich. 2019. Geometry-aware scattering compensation for 3D printing. ACM TOG (Proc. SIGGRAPH) 38, 4 (2019).Google Scholar
51. G. Taubin. 1995. A Signal Processing Approach to Fair Surface Design. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’95). Association for Computing Machinery, New York, NY, USA, 351–358. Google ScholarDigital Library
52. R.A. Ulichney. 1993. Void-and-cluster method for dither array generation. In Human Vision, Visual Processing, and Digital Display IV, Vol. 1913. International Society for Optics and Photonics, 332–343.Google Scholar
53. F. L. Van Nes and M. A. Bouman. 1967. Spatial modulation transfer in the human eye. JOSA 57, 3 (1967), 401–406.Google ScholarCross Ref
54. Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing 13, 4 (2004), 600–612.Google ScholarDigital Library
55. Xaar. 2020. High Laydown Technology. https://www.xaar.com/en/about/xaar-technologies/high-laydown-technology/.Google Scholar
56. D.-M. Yan, J.-W. Guo, B. Wang, X.-P. Zhang, and P. Wonka. 2015. A Survey of Blue-Noise Sampling and Its Applications. J. Comp. Sci. and Tech. 30 (2015), 439–453.Google ScholarCross Ref
57. B. Zhou and X. Fang. 2003. Improving Mid-tone Quality of Variable-Coefficient Error Diffusion Using Threshold Modulation. ACM TOG (Proc. SIGGRAPH) 22, 3 (2003), 437–444.Google ScholarDigital Library