“Virtual ray lights for rendering scenes with participating media” by Novák, Nowrouzezahrai, Dachsbacher and Jarosz

  • ©Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz

Conference:


Type(s):


Title:

    Virtual ray lights for rendering scenes with participating media

Presenter(s)/Author(s):



Abstract:


    We present an efficient many-light algorithm for simulating indirect illumination in, and from, participating media. Instead of creating discrete virtual point lights (VPLs) at vertices of random-walk paths, we present a continuous generalization that places virtual ray lights (VRLs) along each path segment in the medium. Furthermore, instead of evaluating the lighting independently at discrete points in the medium, we calculate the contribution of each VRL to entire camera rays through the medium using an efficient Monte Carlo product sampling technique. We prove that by spreading the energy of virtual lights along both light and camera rays, the singularities that typically plague VPL methods are significantly diminished. This greatly reduces the need to clamp energy contributions in the medium, leading to robust and unbiased volumetric lighting not possible with current many-light techniques. Furthermore, by acting as a form of final gather, we obtain higher-quality multiple-scattering than existing density estimation techniques like progressive photon beams.

References:


    1. Aila, T., and Laine, S. 2009. Understanding the efficiency of ray traversal on gpus. In Proc. of High Performance Graphics. Google ScholarDigital Library
    2. Arbree, A., Walter, B., and Bala, K. 2008. Single-pass scalable subsurface rendering with lightcuts. Computer Graphics Forum 27, 2.Google ScholarCross Ref
    3. Baran, I., Chen, J., Ragan-Kelley, J., Durand, F., and Lehtinen, J. 2010. A hierarchical volumetric shadow algorithm for single scattering. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 29, 5. Google ScholarDigital Library
    4. Cerezo, E., Perez-Cazorla, F., Pueyo, X., Seron, F., and Sillion, F. 2005. A survey on participating media rendering techniques. The Visual Computer 21.Google Scholar
    5. Chandrasekar, S. 1960. Radiative Transfer. Dover Publications.Google Scholar
    6. Dammertz, H., Keller, A., and Lensch, H. P. A. 2010. Progressive point-light-based global illumination. Computer Graphics Forum 29, 8.Google ScholarCross Ref
    7. Dong, Z., Grosch, T., Ritschel, T., Kautz, J., and Seidel, H.-P. 2009. Real-time indirect illumination with clustered visibility. In Proc. Vision, Modeling, and Visualization Workshop.Google Scholar
    8. Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. ACM Transactions on Graphics (Proc. SIGGRAPH) 24, 3. Google ScholarDigital Library
    9. Engelhardt, T., and Dachsbacher, C. 2010. Epipolar sampling for shadows and crepuscular rays in participating media with single scattering. In Symposium on Interactive 3D Graphics and Games. Google ScholarDigital Library
    10. Engelhardt, T., Novák, J., and Dachsbacher, C. 2010. Instant multiple scattering for interactive rendering of heterogeneous participating media. Tech. rep., Karlsruhe Institute of Technology, Dec.Google Scholar
    11. Georgiev, I., Křivánek, J., Popov, S., and Slusallek, P. 2012. Importance caching for complex illumination. Computer Graphics Forum (Proc. of Eurographics) 31, 2. Google ScholarDigital Library
    12. Gradshteyn, I. S., and Ryzhik, I. M. 1994. Table of Integrals, Series, and Products, Fifth Edition. Academic Press.Google Scholar
    13. Hachisuka, T., and Jensen, H. W. 2009. Stochastic progressive photon mapping. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 28, 5. Google ScholarDigital Library
    14. Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Transactions on Graphics (Proc. SIGGRAPH) 27, 3. Google ScholarDigital Library
    15. Hachisuka, T., Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 27, 5. Google ScholarDigital Library
    16. Havran, V., Bittner, J., Herzog, R., and Seidel, H.-P. 2005. Ray maps for global illumination. In Proc. of Eurographics Symposium on Rendering. Google ScholarDigital Library
    17. Hašan, M., Pellacini, F., and Bala, K. 2007. Matrix row-column sampling for the many-light problem. ACM Transactions on Graphics (Proc. SIGGRAPH) 26, 3. Google ScholarDigital Library
    18. Hašan, M., Křivánek, J., Walter, B., and Bala, K. 2009. Virtual spherical lights for many-light rendering of glossy scenes. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 28, 5. Google ScholarDigital Library
    19. Heidrich, W., Brabec, S., and Seidel, H.-P. 2000. Soft shadow maps for linear lights. In Proc. of Eurographics Workshop on Rendering. Google ScholarDigital Library
    20. Herzog, R., Havran, V., Kinuwaki, S., Myszkowski, K., and Seidel, H.-P. 2007. Global illumination using photon ray splatting. Computer Graphics Forum (Proc. of Eurographics) 26, 3.Google ScholarCross Ref
    21. Jarosz, W., Zwicker, M., and Jensen, H. W. 2008. The beam radiance estimate for volumetric photon mapping. Computer Graphics Forum (Proc. of Eurographics) 27, 2.Google ScholarCross Ref
    22. Jarosz, W., Nowrouzezahrai, D., Sadeghi, I., and Jensen, H. W. 2011. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Transactions on Graphics (Proc. SIGGRAPH) 30, 1. Google ScholarDigital Library
    23. Jarosz, W., Nowrouzezahrai, D., Thomas, R., Sloan, P. P., and Zwicker, M. 2011. Progressive photon beams. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 30, 6. Google ScholarDigital Library
    24. Jensen, H. W., and Christensen, P. H. 1998. Efficient simulation of light transport in scenes with participating media using photon maps. In Proc. of SIGGRAPH ’98. Google ScholarDigital Library
    25. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proc. of SIGGRAPH ’01. Google ScholarDigital Library
    26. Jensen, H. W. 1996. Global illumination using photon maps. In Proc. of Eurographics Rendering Workshop. Google ScholarDigital Library
    27. Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., Natick, MA, USA. Google ScholarDigital Library
    28. Kajiya, J. T. 1986. The rendering equation. In Computer Graphics (Proc. of SIGGRAPH). Google ScholarDigital Library
    29. Keller, A. 1997. Instant radiosity. In Proc. of SIGGRAPH ’97. Google ScholarDigital Library
    30. Knaus, C., and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Transactions on Graphics 30, 3. Google ScholarDigital Library
    31. Kollig, T., and Keller, A. 2006. Illumination in the presence of weak singularities. In Monte Carlo and Quasi-Monte Carlo Methods 2004.Google Scholar
    32. Kulla, C., and Fajardo, M. 2011. Importance sampling of area lights in participating media. In ACM SIGGRAPH 2011 Talks. Google ScholarDigital Library
    33. Křivánek, J., Ferwerda, J. A., and Bala, K. 2010. Effects of global illumination approximations on material appearance. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4. Google ScholarDigital Library
    34. Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Compugraphics ’93.Google Scholar
    35. Lafortune, E. P., and Willems, Y. D. 1996. Rendering participating media with bidirectional path tracing. In Proceedings of the eurographics workshop on Rendering techniques. Google ScholarDigital Library
    36. Laine, S., Saransaari, H., Kontkanen, J., Lehtinen, J., and Aila, T. 2007. Incremental instant radiosity for real-time indirect illumination. In Proc. of Eurographics Symposium on Rendering. Google ScholarDigital Library
    37. Lastra, M., Ureña, C., Revelles, J., and Montes, R. 2002. A particle-path based method for monte carlo density estimation. In Proc. of Eurographics Workshop on Rendering.Google Scholar
    38. Moon, J. T., and Marschner, S. R. 2006. Simulating multiple scattering in hair using a photon mapping approach. In ACM Transactions on Graphics (Proc. SIGGRAPH), ACM, NY. Google ScholarDigital Library
    39. Novák, J., Engelhardt, T., and Dachsbacher, C. 2011. Screen-space bias compensation for interactive high-quality global illumination with virtual point lights. In Proc. of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. Google ScholarDigital Library
    40. Ou, J., and Pellacini, F. 2011. Lightslice: Matrix slice sampling for the many-lights problem. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 30, 6. Google ScholarDigital Library
    41. Pegoraro, V., and Parker, S. G. 2009. An analytical solution to single scattering in homogeneous participating media. Computer Graphics Forum (Proc. of Eurographics) 28, 2.Google ScholarCross Ref
    42. Pegoraro, V., Schott, M., and Parker, S. G. 2009. An analytical approach to single scattering for anisotropic media and light distributions. In Proc. of Graphics Interface. Google ScholarDigital Library
    43. Pegoraro, V., Schott, M., and Parker, S. G. 2010. A closed-form solution to single scattering for general phase functions and light distributions. Computer Graphics Forum (Proc. of Eurographics Symposium on Rendering) 29, 4. Google ScholarDigital Library
    44. Raab, M., Seibert, D., and Keller, A. 2008. Unbiased global illumination with participating media. In Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer.Google Scholar
    45. Reichert, M. C. 1992. A Two-pass Radiosity Method Driven by Lights and Viewer Position. Master’s thesis, Cornell University.Google Scholar
    46. Ritschel, T., Grosch, T., Kim, M. H., Seidel, H.-P., Dachsbacher, C., and Kautz, J. 2008. Imperfect shadow maps for efficient computation of indirect illumination. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 27, 5. Google ScholarDigital Library
    47. Sun, B., Ramamoorthi, R., Narasimhan, S. G., and Nayar, S. K. 2005. A practical analytic single scattering model for real time rendering. ACM Transactions on Graphics (Proc. SIGGRAPH) 24, 3. Google ScholarDigital Library
    48. Sun, X., Zhou, K., Lin, S., and Guo, B. 2010. Line space gathering for single scattering in large scenes. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4. Google ScholarDigital Library
    49. Veach, E., and Guibas, L. 1994. Bidirectional estimators for light transport. In Proc. of Eurographics Rendering Workshop.Google Scholar
    50. Veach, E. 1997. Robust Monte Carlo methods for light transport simulation. PhD thesis, Stanford, CA, USA. Google ScholarDigital Library
    51. Wald, I., Kollig, T., Benthin, C., Keller, A., and Slusallek, P. 2002. Interactive global illumination using fast ray tracing. In Proc. of Eurographics Workshop on Rendering. Google ScholarDigital Library
    52. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P. 2005. Lightcuts: a scalable approach to illumination. ACM Transactions on Graphics (Proc. SIGGRAPH) 24, 3. Google ScholarDigital Library
    53. Walter, B., Arbree, A., Bala, K., and Greenberg, D. P. 2006. Multidimensional lightcuts. ACM Transactions on Graphics (Proc. SIGGRAPH) 25, 3. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: