“Authoring landscapes by combining ecosystem and terrain erosion simulation” – ACM SIGGRAPH HISTORY ARCHIVES

“Authoring landscapes by combining ecosystem and terrain erosion simulation”

  • ©

Conference:


Type(s):


Title:

    Authoring landscapes by combining ecosystem and terrain erosion simulation

Session/Category Title:   Simulation for Virtual Worlds


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We introduce a novel framework for interactive landscape authoring that supports bi-directional feedback between erosion and vegetation simulation. Vegetation and terrain erosion have strong mutual impact and their interplay influences the overall realism of virtual scenes. Despite their importance, these complex interactions have been neglected in computer graphics. Our framework overcomes this by simulating the effect of a variety of geomorphological agents and the mutual interaction between different material and vegetation layers, including rock, sand, humus, grass, shrubs, and trees. Users are able to exploit these interactions with an authoring interface that consistently shapes the terrain and populates it with details. Our method, validated through side-by-side comparison with real terrains, can be used not only to generate realistic static landscapes, but also to follow the temporal evolution of a landscape over a few centuries.

References:


    1. Bedrich Benes, Michel Abdul-Massih, Philip Jarvis, Daniel G. Aliaga, and Carlos A. Vanegas. 2011. Urban ecosystem design. In Proc. of I3D. New York, NY, USA, 167–174.Google Scholar
    2. Bedrich Benes, Nathan Andrysco, and Ondřej Št’ava. 2009. Interactive Modeling of Virtual Ecosystems. In Proceedings of Eurographics Workshop on Natural Phenomena. 9–16.Google Scholar
    3. Bedrich Benes and Enrique David Espinosa. 2003. Modeling virtual ecosystems with the proactive guidance of agents. In Proc. of CASA. 126–131. Google ScholarCross Ref
    4. Bedrich Benes and Rafael Forsbach. 2001. Layered Data Representation for Visual Simulation of Terrain Erosion. In Proc. of SCCG, Vol. 25(4). IEEE Computer Society, 80–86. Google ScholarCross Ref
    5. Bedrich Benes and Rafael Forsbach. 2002. Visual Simulation of Hydraulic Erosion. In Proc. of the WSCG. 120–132.Google Scholar
    6. Bedrich Benes, Václav Těšínský, Jan Hornyš, and Sanjiv K. Bhatia. 2006. Hydraulic erosion. Computer Animation and Virtual Worlds 17, 2 (2006), 99–108. Google ScholarDigital Library
    7. Jules Bloomenthal. 1985. Modeling the mighty maple. Proc. of Siggraph 19 (1985), 305–311. Google ScholarDigital Library
    8. Gwyneth A Bradbury, Kartic Subr, Charalampos Koniaris, Kenny Mitchell, and Tim Weyrich. 2015. Guided Ecological Simulation for Artistic Editing of Plant Distributions in Natural Scenes. Journal of Computer Graphics Techniques 4, 4 (Nov. 2015), 28–53.Google Scholar
    9. Jean Braun and Malcolm Sambridge. 1997. Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization. Basin Research 9, 1 (1997), 27–52. Google ScholarCross Ref
    10. Brian Cade, James Terrell, and Richard Schroeder. 1999. Estimating effects of limiting factors with regression quantiles. Ecology 80, 1 (1999), 311–323. Google ScholarCross Ref
    11. Norishige Chiba, Kazunobu Muraoka, and Kunihiko Fujita. 1998. An Erosion Model Based on Velocity Fields for the Visual Simulation of Mountain Scenery. The Journal of Visualization and Computer Animation 9 (1998), 185–194. Google ScholarCross Ref
    12. Eugene Ch’Ng. 2013. Model resolution in complex systems simulation: Agent preferences, behavior, dynamics and n-tiered networks. Simulation 89, 5 (May 2013), 635–639. Google ScholarDigital Library
    13. Guillaume Cordonnier, Jean Braun, Marie-Paule Cani, Bedrich Benes, Eric Galin, Adrien Peytavie, and Guérin Eric. 2016. Large Scale Terrain Generation from Tectonic Uplift and Fluvial Erosion. Comp. Graph. Forum 35, 2 (2016), 165–175.Google ScholarCross Ref
    14. Alexander L Densmore, Michael A Ellis, and Robert S Anderson. 1998. Landsliding and the evolution of normal-fault-bounded mountains. Journal of geophysical research: solid earth 103, B7 (1998), 15203–15219.Google ScholarCross Ref
    15. Oliver Deussen, Pat Hanrahan, Bernd Lintermann, Radomír Měch, Matt Pharr, and Przemyslaw Prusinkiewicz. 1998. Realistic Modeling and Rendering of Plant Ecosystems. In Proc. of Siggraph (SIGGRAPH ’98). ACM, 275–286. Google ScholarDigital Library
    16. Oliver Deussen and Bernd Lintermann. 2006. Digital design of nature: computer generated plants and organics. Springer Science & Business Media.Google Scholar
    17. Arnaud Emilien, Ulysse Vimont, Marie-Paule Cani, Pierre Poulin, and Bedrich Benes. 2015. WorldBrush: Interactive Example-based Synthesis of Procedural Virtual Worlds. ACM Trans. Graph. (2015).Google Scholar
    18. Jonathan A. Foley, I. Colin Prentice, Navin Ramankutty, Samuel Levis, David Pollard, Steven Sitch, and Alex Haxeltine. 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles 10, 4 (1996), 603–628. Google ScholarCross Ref
    19. Alain Fournier, Don Fussell, and Loren Carpenter. 1982. Computer rendering of stochastic models. Commun. ACM 25, 6 (1982), 371–384. Google ScholarDigital Library
    20. James Gain, Harry Long, Guillaume Cordonnier, and Marie-Paule Cani. 2017. EcoBrush: Interactive Control of Visually Consistent Large-Scale Ecosystems. Comp. Graph. Forum 36, 2 (2017), 105–116.Google ScholarCross Ref
    21. James Gain, Bruce Merry, and Patrick Marais. 2015. Parallel, Realistic and Controllable Terrain Synthesis. Comp. Graph. Forum 34, 2 (2015), 105–116.Google ScholarDigital Library
    22. Jean-David Génevaux, Eric Galin, Eric Guérin, Adrien Peytavie, and Bedrich Benes. 2013. Terrain Generation Using Procedural Models Based on Hydrology. ACM Trans. Graph. 32, 4, Article 143 (2013), 13 pages.Google ScholarDigital Library
    23. Jean-David Genevaux, Eric Galin, Adrien Peytavie, Eric Guérin, Cyril Briquet, François Grosbellet, and Bedrich Benes. 2015. Terrain Modelling from Feature Primitives. Comp. Graph. Forum 34, 6 (2015), 198–210.Google ScholarCross Ref
    24. Sabine Grunwald. 2016. Environmental soil-landscape modeling: Geographic information technologies and pedometrics. CRC Press.Google Scholar
    25. Eric Guérin, Julie Digne, Adrien Peytavie, and Eric Galin. 2016. Sparse representation of terrains for procedural modeling. Comp. Graph. Forum 35, 2 (2016), 177–187.Google ScholarCross Ref
    26. Eric Guérin, Eric Galin, François Grosbellet, Adrien Peytavie, and Jean-David Geneveaux. 2016. Efficient modeling of entangled details for natural scenes. Comp. Graph. Forum 35, 7 (2016).Google Scholar
    27. Steven I Higgins, William J Bond, Edmund C February, Andries Bronn, Douglas IW Euston-Brown, Beukes Enslin, Navashni Govender, Louise Rademan, Sean O’Regan, Andre LF Potgieter, and others. 2007. Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88, 5 (2007), 1119–1125.Google ScholarCross Ref
    28. Alex D. Kelley, Michael C. Malin, and Gregory M. Nielson. 1988. Terrain simulation using a model of stream erosion. ACM Trans. on Graph. (1988), 263–268. Google ScholarDigital Library
    29. Jasper Knight and Stefan Grab. 2014. Lightning as a geomorphic agent on mountain summits: Evidence from southern Africa. Geomorphology 204 (2014), 61–70. Google ScholarCross Ref
    30. Peter Krištof, Bedrich Benes, Jaroslav Křivánek, and Ondřej Štava. 2009. Hydraulic Erosion Using Smoothed Particle Hydrodynamics. Computer Graphics Forum 28, 2 (2009). Google ScholarCross Ref
    31. Brendan Lane and Przemyslaw Prusinkiewicz. 2002. Generating spatial distributions for multilevel models of plant communities. In Proc. of Graphics Interface. 69–80.Google Scholar
    32. Aristid Lindenmayer. 1968. Mathematical models for cellular interaction in development. Journal of Theoretical Biology Parts I and II, 18 (1968), 280–315. Google ScholarCross Ref
    33. Benoit B Mandelbrot and Roberto Pignoni. 1983. The Fractal Geometry of Nature. W.H. Freeman and Company, San Francisco.Google Scholar
    34. Xing Mei, Philippe Decaudin, and Bao-Gang Hu. 2007. Fast Hydraulic Erosion Simulation and Visualization on GPU. In Proc. of Pacific Graphics. Google ScholarDigital Library
    35. F Kenton Musgrave, Craig E Kolb, and Robert S Mace. 1989. The synthesis and rendering of eroded fractal terrains. Proc. of Siggraph 23, 3 (1989), 41–50.Google ScholarDigital Library
    36. Mattia Natali, EM Lidal, J Parulek, I Viola, and D Patel. 2013. Modeling terrains and subsurface geology. Proc. of Eurogr. State of the Art Reports (2013), 155–173.Google Scholar
    37. Benjamin Neidhold, Markus Wacker, and Oliver Deussen. 2005. Interactive physically based Fluid and Erosion Simulation. In Proceedings of the First Eurographics Conference on Natural Phenomena. 25–33.Google ScholarDigital Library
    38. Adrien Peytavie, Eric Galin, Jérôme Grosjean, and Stéphane Mérillou. 2009. Arches: a Framework for Modeling Complex Terrains. Comp. Graph. Forum 28, 2 (2009), 457–467.Google ScholarCross Ref
    39. I Colin Prentice, Martin T Sykes, and Wolfgang Cramer. 1993. A simulation model for the transient effects of climate change on forest landscapes. Ecological modelling 65, 1 (1993), 51–70. Google ScholarCross Ref
    40. Przemyslaw Prusinkiewicz and Mark Hammel. 1993. A Fractal Model of Mountains with Rivers. In Proc. of Graphics Interface, Vol. 30(4). 174–180.Google Scholar
    41. Przemyslaw Prusinkiewicz and Aristid Lindenmayer. 1990. The Algorithmic Beauty of Plants. Springer-Verlag, New York. Google ScholarCross Ref
    42. Hisashi Sato, Akihiko Itoh, and Takashi Kohyama. 2007. SEIB-DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach. Ecological Modelling 200, 3–4 (2007), 279 — 307.Google ScholarCross Ref
    43. Stephen Sitch, Benjamin Smith, I Colin Prentice, Almut Arneth, A Bondeau, W Cramer, JO Kaplan, Samuel Levis, W Lucht, M Thonicke Sykes, and others. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9, 2 (2003), 161–185. Google ScholarCross Ref
    44. Ruben M. Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A Survey on Procedural Modelling for Virtual Worlds. Comp. Graph. Forum 33, 6 (2014), 31–50.Google ScholarDigital Library
    45. Szymon Stachniak and Wolfgang Stuerzlinger. 2005. An Algorithm for Automated Fractal Terrain Deformation. In Proceedings of Computer Graphics and Artificial Intelligence, Vol. 1. 64–76.Google Scholar
    46. Ondřej Št’ava, Bedrich Benes, Matthew Brisbin, and Jaroslav Křivánek. 2008. Interactive terrain modeling using hydraulic erosion. In Proceedings of the SCA. Eurographics Association, 201–210.Google Scholar
    47. Juraj Vanek, Bedrich Benes, AdamHerout, and Ondrej Stava. 2011. Large-Scale Physics-Based Terrain Editing Using Adaptive Tiles on the GPU. Comp. Graph. and App., IEEE 31, 6 (2011), 35 –44.Google ScholarDigital Library
    48. Richard F Voss. 1985. Random fractal forgeries. In Fundamental algorithms for computer graphics. Springer, 805–835.Google Scholar
    49. Shahram Yassemi, Suzana Dragićević, and Margaret Schmidt. 2008. Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behaviour. ecological modelling 210, 1 (2008), 71–84.Google Scholar
    50. Howard Zhou, Jie Sun, Greg Turk, and James M Rehg. 2007. Terrain synthesis from digital elevation models. IEEE Trans. on Vis. and Comp. Graph. 13, 4 (2007), 834–848.Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: