“In the blink of an eye: leveraging blink-induced suppression for imperceptible position and orientation redirection in virtual reality” by Langbehn, Steinicke, Lappe, Welch and Bruder

  • ©Eike Langbehn, Frank Steinicke, Markus Lappe, and Gerd Bruder

Conference:


Type(s):


Entry Number: 66

Title:

    In the blink of an eye: leveraging blink-induced suppression for imperceptible position and orientation redirection in virtual reality

Session/Category Title:   Interaction/VR


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Immersive computer-generated environments (aka virtual reality, VR) are limited by the physical space around them, e.g., enabling natural walking in VR is only possible by perceptually-inspired locomotion techniques such as redirected walking (RDW). We introduce a completely new approach to imperceptible position and orientation redirection that takes advantage of the fact that even healthy humans are functionally blind for circa ten percent of the time under normal circumstances due to motor processes preventing light from reaching the retina (such as eye blinks) or perceptual processes suppressing degraded visual information (such as blink-induced suppression). During such periods of missing visual input, change blindness occurs, which denotes the inability to perceive a visual change such as the motion of an object or self-motion of the observer. We show that this phenomenon can be exploited in VR by synchronizing the computer graphics rendering system with the human visual processes for imperceptible camera movements, in particular to implement position and orientation redirection. We analyzed human sensitivity to such visual changes with detection thresholds, which revealed that commercial off-the-shelf eye trackers and head-mounted displays suffice to translate a user by circa 4 — 9 cm and rotate the user by circa 2 — 5 degrees in any direction, which could be accumulated each time the user blinks. Moreover, we show the potential for RDW, whose performance could be improved by approximately 50% when using our technique.

References:


    1. Mahdi Azmandian, Timofey Grechkin, Mark Bolas, and Evan Suma. 2016. Automated Path Prediction for Redirected Walking Using Navigation Meshes. In IEEE Symposium on 3D User Interfaces (3DUI). 63–66.Google Scholar
    2. Mark W. Becker, Harold Pashler, and Stuart M. Anstis. 2000. The Role of Iconic Memory in Change-Detection Tasks. Perception 29, 3 (2000), 273–286.Google ScholarCross Ref
    3. Benjamin Bolte and Markus Lappe. 2015. Subliminal Reorientation and Repositioning in Immersive Virtual Environments using Saccadic Suppression. IEEE Transactions on Visualization and Computer Graphics (TVCG) 21, 4 (2015), 545–552.Google ScholarDigital Library
    4. Bruce Bridgeman, Derek Hendry, and Lawrence Stark. 1975. Failure to Detect Displacement of the Visual World During Saccadic Eye Movements. Vision Research 15, 6 (1975), 719–722.Google ScholarCross Ref
    5. Bruce Bridgeman, A. H. C. van der Heijden, and Boris M. Velichkovsky 1994. A Theory of Visual Stability Across Saccadic Eye Movements. Behav. Brain Sci. 17 (1994), 247–292.Google ScholarCross Ref
    6. Davina Bristow, John-Dylan Haynes, Richard Sylvester, Christopher D. Frith, and Geraint Rees. 2005. Blinking Suppresses the Neural Response to Unchanging Retinal Stimulation. Current Biology 15, 14 (2005), 1296–1300.Google ScholarCross Ref
    7. Gerd Bruder, Victoria Interrante, Lane Phillips, and Frank Steinicke. 2012a. Redirecting Walking and Driving for Natural Navigation in Immersive Virtual Environments. IEEE Transactions on Visualization and Computer Graphics (TVCG) 18, 4 (2012), 538–545. Google ScholarDigital Library
    8. Gerd Bruder, Aandreas Pusch, and Frank Steinicke. 2012b. Analyzing Effects of Geometric Rendering Parameters on Size and Distance Estimation in On-Axis Stereographies. In Proceedings of ACM Symposium on Applied Perception (SAP). ACM, 111–118. Google ScholarDigital Library
    9. Gerd Bruder, Frank Steinicke, Benjamin Bolte, Phil Wieland, Harald Frenz, and Markus Lappe. 2013. Exploiting Perceptual Limitations and Illusions to Support Walking Through Virtual Environments in Confined Physical Spaces. Displays 34, 2 (2013), 132–141.Google ScholarCross Ref
    10. Michael Collins, Rhonda Seeto, Louella Campbell, and Murray Ross. 1989. Blinking and Corneal Sensitivity. Acta ophthalmologica 67, 5 (1989), 525–531.Google Scholar
    11. Max Coltheart. 1980. Iconic Memory and Visible Persistence. Perception & Psychophysics 27, 3 (1980), 183–228.Google ScholarCross Ref
    12. Mark S. Dennison, A. Zachary Wisti, and Michael DâĂŹZmura. 2016. Use of Physiological Signals to Predict Cybersickness. Displays 44 (2016), 42–52.Google ScholarCross Ref
    13. AO Dick. 1974. Iconic Memory and its Relation to Perceptual Processing and Other Memory Mechanisms. Attention, Perception, & Psychophysics 16, 3 (1974), 575–596.Google ScholarCross Ref
    14. Michael J. Doughty. 2002. Further Assessment of Gender-and Blink Pattern-related Differences in the Spontaneous Eyeblink Activity in Primary Gaze in Young Adult Humans. Optometry & Vision Science 79, 7 (2002), 439–447.Google ScholarCross Ref
    15. Ángel Esteban, Alfredo Traba, and Julio Prieto. 2004. Eyelid Movements in Health and Disease. The Supranuclear Impairment of the Palpebral Motility. Neurophysiologie CUnique/Clinical Neurophysiology 34, 1 (2004), 3–15.Google ScholarCross Ref
    16. Craig Evinger, Karen A. Manning, John J. Pellegrini, Michele A. Basso, Alice S. Powers, and Patrick A. Sibony. 1994. Not Looking While Leaping: The Linkage of Blinking and Saccadic Gaze Shifts. Experimental Brain Research 100, 2 (1994), 337–344.Google ScholarCross Ref
    17. Craig Evinger, MD Shaw, CK Peck, KA Manning, and R Baker. 1984. Blinking and Associated Eye Movements in Humans, Guinea Pigs, and Rabbits. Journal of Neuro-physiology 52, 2 (1984), 323–339.Google Scholar
    18. Janet Fitzakerley 2015. Eyelid Movements. http://www.d-umn.edu/~jfitzake/Lectures/DMED/Vision/Optics/Blinking.html. {Online; accessed 28-Feb-2017}.Google Scholar
    19. Anatoly M. Fonarev. 1961. A Vestibulo-Palpebral Reflex. Bulletin of Experimental Biology and Medicine 50, 6 (01 Jun 1961), 1249–1251.Google Scholar
    20. Timofey Grechkin, Jerald Thomas, Mahdi Azmandian, Mark Bolas, and Evan Suma. 2016. Revisiting Detection Thresholds for Redirected Walking: Combining Translation and Curvature Gains. In Proceedings of ACM Symposium on Applied Perception (SAP). 113–120. Google ScholarDigital Library
    21. Helinä Häkkänen, Heikki Summala, Markku Partinen, Mikko Tiihonen, and Jouni Silvo. 1999. Blink Duration as an Indicator of Driver Sleepiness in Professional Bus Drivers. Sleep 22, 6 (1999), 798–802.Google ScholarCross Ref
    22. Arthur Hall. 1945. The Origin and Purposes of Blinking. The British Journal of Ophthalmology 29, 9 (1945), 445.Google ScholarCross Ref
    23. Eric Hodgson, Eric Bachmann, and Tyler Thrash. 2014. Performance of Redirected Walking Algorithms in a Constrained Virtual World. IEEE transactions on visualization and computer graphics (TVCG) 20, 4 (2014), 579–587. Google ScholarDigital Library
    24. Victoria Ivleva. 2016. Redirected Walking in Virtual Reality during Eye Blinking. Master’s thesis. University of Bremen.Google Scholar
    25. Murray Johns, Kate Crowley, Robert Chapman, Andrew Tucker, and Christopher Hocking. 2009. The Effect of Blinks and Saccadic Eye Movements on Visual Reaction Times. Attention, Perception, & Psychophysics 71, 4 (2009), 783–788.Google ScholarCross Ref
    26. Robert S. Kennedy, Norman E. Lane, Kevin S. Berbaum, and Michael G. Lilienthal. 1993. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology 3, 3 (1993), 203–220.Google ScholarCross Ref
    27. J. Kevin O’Regan, Heiner Deubel, James J. Clark, and Ronald A. Rensink. 2000. Picture Changes during Blinks: Looking Without Seeing and Seeing Without Looking. Visual Cognition 7, 1-3 (2000), 191–211.Google Scholar
    28. Eike Langbehn, Paul Lubos, Gerd Bruder, and Frank Steinicke. 2017. Bending the Curve: Sensitivity to Bending of Curved Paths and Application in Room-Scale VR. IEEE Transactions on Visualization and Computer Graphics (TVCG) (2017), 1389–1398. Google ScholarDigital Library
    29. Eike Langbehn and Frank Steinicke. 2018. Redirected Walking in Virtual Reality. Springer International Publishing.Google Scholar
    30. Joseph J. LaViola Jr. 2000. A Discussion of Cybersickness in Virtual Environments. ACM SIGCHI Bulletin 32, 1 (2000), 47–56. Google ScholarDigital Library
    31. R. John Leigh and David S. Zee. 2006. The Neurology of Eye Movements, edition 4 (contemporary neurology series).Google Scholar
    32. Daniel T. Levin, Sarah B. Drivdahl, Nausheen Momen, and Melissa R. Beck. 2002. False Predictions About the Detectability of Visual Changes: The Role of Beliefs About Attention, Memory, and the Continuity of Attended Objects in Causing Change Blindness Blindness. Consciousness and Cognition 11, 4 (2002), 507–527.Google ScholarCross Ref
    33. Daniel T. Levin, Nausheen Momen, Sarah B. Drivdahl IV, and Daniel J. Simons. 2000. Change Blindness Blindness: The Metacognitive Error of Overestimating Change-Detection Ability. Visual Cognition 7, 1-3 (2000), 397–412.Google ScholarCross Ref
    34. Keigo Matsumoto, Yuki Ban, Takuji Narumi, Yohei Yanase, Tomohiro Tanikawa, and Michitaka Hirose. 2016. Unlimited Corridor: Redirected Walking Techniques Using Visuo Haptic Interaction. In ACM SIGGRAPH Emerging Technologies. 20. Google ScholarDigital Library
    35. Betty J. Mohler, Jennifer L. Campos, M.B. Weyel, and Heinrich H. Bülthoff. 2007. Gait Parameters While Walking in a Head-Mounted Display Virtual Environment and the Real World. In Proceedings of Eurographics Symposium on Virtual Environments. 85–88.Google Scholar
    36. Robert A. Moses. 1981. Adler’s Physiology of the Eye. Mosby.Google Scholar
    37. Thomas Nescher, Ying-Yin Huang, and Andreas Kunz. 2014. Planning Redirection Techniques for Optimal Free Walking Experience Using Model Predictive Control. In IEEE Symposium on 3D User Interfaces (3DUI).Google Scholar
    38. Christian T. Neth, Jan L. Souman, David Engel, Uwe Kloos, Heinrich H. Bulfhoff, and Betty J. Mohler. 2012. Velocity-Dependent Dynamic Curvature Gain for Redirected Walking. IEEE Transactions on Visualization and Computer Graphics (TVCG) 18, 7 (2012), 1041–1052. Google ScholarDigital Library
    39. Lasse T. Nielsen, Matias B. Møller, Sune D. Hartmeyer, Troels C. M. Ljung, Niels C. Nilsson, Rolf Nordahl, and Stefania Serafin. 2016. Missing the Point: An Exploration of How to Guide Users’ Attention During Cinematic Virtual Reality. In Proceedings of ACM Virtual Reality Software and Technology (VRST) (VRST ’16). ACM, New York, NY, USA, 229–232. Google ScholarDigital Library
    40. Matthias Niemeier, J. Douglas Crawford, and Douglas B. Tweed. 2003. Optimal Transsaccadic Integration Explains Distorted Spatial Perception. Nature 422, 6927 (2003), 76–80.Google Scholar
    41. Niels Nilsson, Tabitha Peck, Gerd Bruder, Eric Hodgson, Stefania Serafin, Evan Suma, Mary Whitton, and Frank Steinicke. 2018. 15 Years of Research on Redirected Walking in Immersive Virtual Environments. IEEE Computer Graphics and Applications PP, 99(2018), 1–1. Google ScholarDigital Library
    42. S. Patel, Ross Henderson, L. Bradley, B. Galloway, and L. Hunter. 1991. Effect of Visual Display Unit Use on Blink Rate and Tear Stability. Optometry & Vision Science 68, 11 (1991), 888–892.Google ScholarCross Ref
    43. Marjan Persuh, Boris Genzer, and Robert D. Melara. 2012. Iconic Memory Requires Attention. Frontiers in Human Neuroscience 6 (2012).Google Scholar
    44. Daniel Ramot. 2008. Average Duration of a Single Eye Blink, http://bionumbers.hms.harvard.edu/bionumber.aspx?s=y&id=100706&ver=0. &ver=0. &ver=0. {Online; accessed 28-Feb-2017}.Google Scholar
    45. Sharif Razzaque. 2005. Redirected Walking. Ph.D. Dissertation. University of North Carolina, Chapel Hill. Google ScholarDigital Library
    46. Sharif Razzaque, Zachariah Kohn, and Mary Whitton. 2001. Redirected Walking. In Proceedings of Eurographics. ACM, 289–294.Google Scholar
    47. UCL Media Relations. 2006. Blink and You Miss It! http://www.ucl.ac.uk/media/library/blinking. {Online; accessed 28-Feb-2017}. Ronald A. Rensink. 2002. Change Detection. Annual Review of Psychology 53 (2002), 245–277.Google Scholar
    48. Ronald A Rensink, J. Kevin O’Regan, and James J. Clark. 2000. On the Failure to Detect Changes in Scenes Across Brief Interruptions. Visual Cognition 7, 1-3 (2000), 127–145.Google ScholarCross Ref
    49. Ronald A. Rensink, J. Kevin O’Regan, and James J. Clark. 1997. To See or Not to See: The Need for Attention to Perceive Changes in Scenes. Psychological Science 8, 5 (1997), 368–373.Google ScholarCross Ref
    50. Sylvia Rothe, Heinrich Hussmann, and Mathias Allary. 2017. Diegetic Cues for Guiding the Viewer in Cinematic Virtual Reality. In Proceedings of ACM Virtual Reality Software and Technology (VRST) (VRST ’17). ACM, New York, NY, USA, Article 54, 2 pages. Google ScholarDigital Library
    51. Chiarella Sforza, Mario Rango, Domenico Galante, Nereo Bresolin, and Virgilio F. Ferrario. 2008. Spontaneous Blinking in Healthy Persons: an Optoelectronic Study of Eyelid Motion. Ophthalmic and Physiological Optics 28, 4 (2008), 345–353.Google ScholarCross Ref
    52. Daniel J. Simons and Daniel T. Levin. 1997. Change Blindness. Trends in Cognitive Sciences 1, 7 (1997), 261–267.Google ScholarCross Ref
    53. Daniel J. Simons and Daniel T. Levin. 1998. Failure to Detect Changes to People During a Real-World Interaction. Psychonomic Bulletin and Review 5 (1998), 644–649.Google ScholarCross Ref
    54. Frank Steinicke, Gerd Bruder, Klaus Hinrichs, and Anthony Steed. 2009. Presence-enhancing Real Walking User Interface for First-Person Video Games. In Proceedings of ACM SIGGRAPH Symposium on Video Games. 111–118. Google ScholarDigital Library
    55. Frank Steinicke, Gerd Bruder, Klaus Hinrichs, and Pete Willemsen. 2010a. Change Blindness Phenomena for Stereoscopic Projection Systems. In Proceedings of IEEE Virtual Reality (VR). 187–194. Google ScholarDigital Library
    56. Frank Steinicke, Gerd Bruder, Klaus Hinrichs, and Pete Willemsen. 2011. Change Blindness Phenomena for Virtual Reality Display Systems. IEEE Transactions on Visualization and Computer Graphics (TVCG) 17, 9 (2011), 1223–1233. Google ScholarDigital Library
    57. Frank Steinicke, Gerd Bruder, Jason Jerald, Harald Fenz, and Markus Lappe. 2010b. Estimation of Detection Thresholds for Redirected Walking Techniques. IEEE Transactions on Visualization and Computer Graphics (TVCG) 16, 1 (2010), 17–27. Google ScholarDigital Library
    58. Frank Steinicke, Yon Visell, Jennifer Campos, and Anatole Lécuyer. 2013. Human Walking in Virtual Environments: Perception, Technology, and Applications. Springer Verlag. Google ScholarDigital Library
    59. Evan A. Suma, Mahdi Azmandian, Timofey Grechkin, Thai Phan, and Mark Bolas. 2015. Making Small Spaces Feel Large: Infinite Walking in Virtual Reality. In ACM SIGGRAPH 2015 Emerging Technologies. ACM, 16. Google ScholarDigital Library
    60. Evan A. Suma, Gerd Bruder, Frank Steinicke, David M. Krum, and Marc Bolas. 2012a. A Taxonomy for Deploying Redirection Techniques in Immersive Virtual Environments. In Proceedings of IEEE Virtual Reality (VR). 43–46. Google ScholarDigital Library
    61. Evan A. Suma, Seth Clark, Samantha L. Finkelstein, and Zachary Wartell. 2010. Exploiting Change Blindness to Expand Walkable Space in a Virtual Environment. In Proceedings of IEEE Virtual Reality (VR). 305–306. Google ScholarDigital Library
    62. Evan A. Suma, Zachary Lipps, Samantha Finkelstein, David M. Krum, and Marc Bolas. 2012b. Impossible Spaces: Maximizing Natural Walking in Virtual Environments with Self-Overlapping Architecture. IEEE Transactions on Visualization and Computer Graphics (TVCG) 18, 4 (2012), 555–564. Google ScholarDigital Library
    63. Qi Sun, Anjul Patney, Li-Yi Wei, Omer Shapira, Jingwan Lu, Paul Asente, Suwen Zhu, Morgan McGuire, David Luebke, and Arie Kaufman. 2018. Towards Virtual Reality Infinite Walking: Dynamic Saccadic Redirection. ACM Transactions on Graphics (TOG) 37, 4 (2018), 67. Google ScholarDigital Library
    64. Qi Sun, Li-Yi Wei, and Arie Kaufman. 2016. Mapping Virtual and Physical Reality. ACM Transactions on Graphics (TOG) 35, 4 (2016), 64. Google ScholarDigital Library
    65. Kaori Takehara, Shigenori Kawahara, and Yutaka Kirino. 2003. Time-Dependent Reorganization of the Brain Components Underlying Memory Retention in Trace Eyeblink Conditioning. Journal of Neuroscience 23, 30 (2003), 9897–9905. arXiv:http://www.jneurosci.org/content/23/30/9897.full.pdf http://www.jneurosci.org/content/23/30/9897Google ScholarCross Ref
    66. Martin Usoh, Kevin Arthur, Mary C. Whitton, Rui Bastos, Aanthony Steed, Mel Slater, and Frederick P. Brooks, Jr. 1999a. Walking > Walking-in-Place > Flying, in Virtual Environments. In Proceedings of ACM SIGGRAPH. 359–364. Google ScholarDigital Library
    67. Martin Usoh, Ernest Catena, Sima Arman, and Mel Slater. 1999b. Using Presence Questionaires in Reality. Presence: Teleoperators & Virtual Environments 9, 5 (1999), 497–503. Google ScholarDigital Library
    68. Frances C. Volkmann. 1986. Human Visual Suppression. Vision Research 26, 9 (1986), 1401–1416.Google ScholarCross Ref
    69. Frances C. Volkmann, Lorrin A. Riggs, and Robert K. Moore. 1980. Eyeblinks and Visual Suppression. Science 207, 4433 (1980), 900–902.Google Scholar
    70. Guy Wallis and Heinrich Bulfhoff. 2000. What’s Scene and not Seen: Influences of Movement and Task Upon What We See. Visual Cognition 7, 1-3 (2000), 175–190.Google ScholarCross Ref
    71. Gabrielle Weidemann, Erin Best, Jessica C. Lee, and Peter F. Lovibond. 2013. The Role of Contingency Awareness in Single-Cue Human Eyeblink Conditioning. Learning & Memory 20, 7 (2013), 363–366.Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page: