“Interactive Black-Hole Visualization” by Verbraeck and Eisemann
Conference:
Type(s):
Interest Area:
- Research / Education and Scientific Visualization
Title:
- Interactive Black-Hole Visualization
Session/Category Title: TVCG Session on Data Visualization
Presenter(s)/Author(s):
Abstract:
We present an efficient algorithm for visualizing the effect of black holes on its distant surroundings as seen from an observer nearby in orbit. Our solution is GPU-based and builds upon a two-step approach, where we first derive an adaptive grid to map the 360-view around the observer to the distorted celestial sky, which can be directly reused for different camera orientations. Using a grid, we can rapidly trace rays back to the observer through the distorted spacetime, avoiding the heavy workload of standard tracing solutions at real-time rates. By using a novel interpolation technique we can also simulate an observer path by smoothly transitioning between multiple grids. Our approach accepts real star catalogues and environment maps of the celestial sky and generates the resulting black-hole deformations in real time.
References:
[1] CUDA C programming guide. docs.nvidia.com/cuda/cuda-cprogramming-guide, 2019.
[2] F. J. Ballesteros. New insights into black bodies. Europhysics Letters, 97(3):1–6, Feb. 2012. doi: 10.1209/0295-5075/97/34008
[3] K. Beckwith and C. Done. Extreme gravitational lensing near rotating black holes. Monthly Notice of the Royal Astronomical Society, 359(4):1217–1228, Jun. 2005. doi: 10.1111/j.1365-2966.2005.08980. x
[4] B. W. Carroll and D. A. Ostlie. An Introduction to Modern Astrophysics. Benjamin Cummings, 1996.
[5] C. Chan, D. Psaltis, and F. Ozel. GRay: A massively parallel GPU-based ¨ code for ray tracing in relativistic spacetimes. The Astrophysical Journal, 777(1):1–9, Oct. 2013. doi: 10.1088/0004-637X/777/1/13
[6] M. Charity. Blackbody color datafile. www.vendian.org/mncharity/dir3/blackbody/, 2001.
[7] J. Davelaar, T. Bronzwaer, D. Kok, Z. Younsi, M. Moscibrodzka, and ´ H. Falcke. Observing supermassive black holes in virtual reality. Computational Astrophysics and Cosmology, 5(1):1–17, Dec. 2018. doi: 10. 1186/s40668-018-0023-7
[8] E. Everhart and J. W. Kantorski. Diffraction patterns produced by obstructions in reflecting telescopes of modest size. Astronomical Journal, 64(1275):455–462, Dec. 1959. doi: 10.1086/107973
[9] A. Hamilton and G. Polhemus. Stereoscopic visualization in curved spacetime: Seeing deep inside a black hole. New Journal of Physics, 12:1–25, Dec. 2010. doi: 10.1088/1367-2630/12/12/123027
[10] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra. Fast summed-area table generation and its applications. Computer Graphics Forum, 24(3):547–555, Sep. 2005. doi: 10.1111/j.1467-8659.2005.00880. x
[11] R. Herzog, E. Eisemann, K. Myszkowski, and H.-P. Seidel. Spatiotemporal upsampling on the GPU. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D), pp. 91–98, Feb. 2010. doi: 10. 1145/1730804
[12] O. James, E. von Tunzelmann, and P. Franklin. Visualizing Interstellar’s wormhole. American Journal of Physics, 83(6):486–499, Jun. 2015. doi: 10.1119/1.4916949
[13] O. James, E. von Tunzelmann, P. Franklin, and K. S. Thorne. Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar. Classical and Quantum Gravity, 32(6):1–41, Feb. 2015. doi: 10.1088/0264-9381/32/6/065001
[14] M. D. Johnson, A. Lupsasca, A. Strominger, G. N. Wong, S. Hadar, D. Kapec, R. Narayan, A. Chael, C. F. Gammie, P. Galison, D. C. M. Palumbo, S. S. Doeleman, L. Blackburn, M. Wielgus, D. W. Pesce, J. R. Farah, and J. M. Moran. Universal interferometric signatures of a black hole’s photon ring. Science Advances, 6(12):1–8, Mar. 2020. doi: 10. 1126/sciadv.aaz1310
[15] D. Kobras, D. Weiskopf, and H. Ruder. Image based rendering and general relativity. The Visual Computer, 18:250–258, Mar. 2002. doi: 10. 1007/s003710100145
[16] S. Lefebvre and H. Hoppe. Perfect spatial hashing. ACM Transactions on Graphics, 25(3):579–588, Jul. 2006. doi: 10.1145/1141911.1141926
[17] J. P. Luminet. Image of a spherical black hole with thin accretion disk. Astronomical Astrophysics, 75(1-2):228–235, May 1979.
[18] C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. W. H. Freeman, 1973.
[19] T. Muller. Image-based general-relativistic visualization. ¨ European Journal of Physics, 36(6):1–11, Nov. 2015. doi: 10.1088/0143-0807/36/6/ 065019
[20] T. Muller and J. Frauendiener. Interactive visualization of a thin disc ¨ around a Schwarzschild black hole. European Journal of Physics, 33(4):955–963, Jul. 2012. doi: 10.1088/0143-0807/33/4/955
[21] T. Muller and D. Weiskopf. Distortion of the stellar sky by a Schwarzschild ¨ black hole. American Journal of Physics, 78(2):204–214, Feb. 2010. doi: 10.1119/1.3258282
[22] D. Nash. The HYG database. www.astronexus.com/hyg, 2006.
[23] O. Porth, H. Olivares, Y. Mizuno, Z. Younsi, L. Rezzolla, M. Moscibrodzka, H. Falcke, and M. Kramer. The black hole accretion code. Computational Astrophysics and Cosmology, 4(1):1–42, Dec. 2017. doi: 10.1186/s40668-017-0020-2
[24] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 1988.
[25] H. Pu, K. Yun, Z. Younsi, and S. Yoon. Odyssey: A public GPU-based code for general-relativistic radiative transfer in Kerr spacetime. The Astrophysical Journal, 820(2):105–116, Mar. 2016. doi: 10.3847/0004 -637X/820/2/105
[26] A. Riazuelo. Seeing relativity-I: Ray tracing in a Schwarzschild metric to explore the maximal analytic extension of the metric and making a proper rendering of the stars. International Journal of Modern Physics D, 28(2):60, Jan. 2019. doi: 10.1142/S0218271819500421
[27] L. Scandolo, S. Lee, and E. Eisemann. Quad-based Fourier transform for efficient diffraction synthesis. Computer Graphics Forum, 37(4):167–176, Jul. 2018. doi: 10.1111/cgf.13484
[28] The Event Horizon Telescope Collaboration et al. First M87 event horizon telescope results. I. The shadow of the supermassive black hole. The Astrophysical Journal Letters, 875(L1):1–31, Apr. 2019. doi: 10.3847/ 2041-8213/ab0ec7
[29] K. Thorne. The Science of Interstellar. W. W. Norton & Company, 2014.
[30] S. U. Viergutz. Image generation in Kerr geometry, I. Analytical investigations on the stationary emitter-observer problem. Astronomy and Astrophysics, 272(22):355–377, May 1993.
[31] F. H. Vincent, T. Paumard, E. Gourgoulhon, and G. Perrin. GYOTO: A new general relativistic ray-tracing code. Classical and Quantum Gravity, 28(22):1–18, Nov. 2011. doi: 10.1088/0264-9381/28/22/225011
[32] D. Weiskopf, M. Borchers, T. Ertl, M. Falk, O. Fechtig, R. Frank, F. Grave, A. King, U. Kraus, T. Muller, H. Nollert, I. R. Mendez, H. Ruder, ¨ T. Schafhitzel, S. Schar, C. Zahn, and M. Zatloukal. Explanatory and ¨ illustrative visualization of special and general relativity. IEEE Transactions on Visualization and Computer Graphics, 12(4):522–534, Jul. 2006. doi: 10.1109/TVCG.2006.69
[33] X. Yang and J. Wang. YNOGK: A new public code for calculating null geodesics in the Kerr spacetime. The Astrophysical Journal Supplement Series, 207(1):1–32, Jun. 2013. doi: 10.1088/0067-0049/207/1/6
[34] A. Zee. Einstein Gravity in a Nutshell. Princeton University Press, 2013.