“Printing spatially-varying reflectance” – ACM SIGGRAPH HISTORY ARCHIVES

“Printing spatially-varying reflectance”

  • ©

Conference:


Type(s):


Title:

    Printing spatially-varying reflectance

Session/Category Title:   Lighting & materials


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Although real-world surfaces can exhibit significant variation in materials — glossy, diffuse, metallic, etc. — printers are usually used to reproduce color or gray-scale images. We propose a complete system that uses appropriate inks and foils to print documents with a variety of material properties. Given a set of inks with known Bidirectional Reflectance Distribution Functions (BRDFs), our system automatically finds the optimal linear combinations to approximate the BRDFs of the target documents. Novel gamut-mapping algorithms preserve the relative glossiness between different BRDFs, and halftoning is used to produce patterns to be sent to the printer. We demonstrate the effectiveness of this approach with printed samples of a number of measured spatially-varying BRDFs.

References:


    1. Ashikhmin, M., Premože, S., and Shirley, P. 2000. A Microfacet-Based BRDF Generator. In Proc. ACM SIGGRAPH, 65–74. Google ScholarDigital Library
    2. Cook, R. L., and Torrance, K. E. 1982. A Reflectance Model for Computer Graphics. ACM Trans. Graphics, Vol. 1, No. 1, 7–24. Google ScholarDigital Library
    3. Dana, K. J., van Ginneken, B., Nayar, S. K., and Koenderink, J. J. 1999. Reflectance and Texture of Real-World Surfaces. ACM Trans. Graphics, Vol. 18, No. 1, 1–34. Google ScholarDigital Library
    4. Fleming, W., Dror, R. O., and Adelson, E. H. 2001. How Do Humans Determine Reflectance Properties under Unknown Illumination? In Proc. CVPR Workshop on Identifying Objects Across Variations in Lighting: Psychophysics and Computation, 347–368.Google Scholar
    5. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear Light Source Reflectometry. ACM Trans. Graphics (Proc. ACM SIGGRAPH), Vol. 22, No. 3, 749–758. Google ScholarDigital Library
    6. Goldman, D. B., Curless, B., Hertzmann, A., and Seitz, S. M. 2005. Shape and Spatially-Varying BRDFs from Photometric Stereo. In Proc. ICCV, 341–348. Google ScholarDigital Library
    7. Han, C., Sun, B., Ramamoorthi, R., and Grinspun, E. 2007. Frequency Domain Normal Map Filtering. ACM Trans. Graphics (Proc. ACM SIGGRAPH), Vol. 26, No. 3, 28:1–28:11. Google ScholarDigital Library
    8. Hersch, R. D., Collaud, F., and Emmel, P. 2003. Reproducing Color Images with Embedded Metallic Patterns. ACM Trans. Graphics (Proc. ACM SIGGRAPH), Vol. 22, No. 3, 427–436. Google ScholarDigital Library
    9. Hersch, R. D., Donzé, P., and Chosson, S. 2007. Color Images Visible under UV Light. ACM Trans. Graphics (Proc. ACM SIGGRAPH), Vol. 26, No. 3, 75:1–75:9. Google ScholarDigital Library
    10. Kang, H. 1999. Digital Color Halftoning. SPIE Press Monograph Vol. PM68. Google ScholarDigital Library
    11. Kautz, J., and McCool, M. D. 1999. Interactive Rendering with Arbitrary BRDFs using Separable Approximations. In Proc. Eurographics Workshop on Rendering, 247–260. Google ScholarCross Ref
    12. Lafortune, E. P. F., Foo, S.-C., Torrance, K. E., and Greenberg, D. P. 1997. Non-Linear Approximation of Reflectance Functions. In Proc. ACM SIGGRAPH, 117–126. Google ScholarDigital Library
    13. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse Shade Trees for Non-Parametric Material Representation and Editing. ACM Trans. Graphics (Proc. ACM SIGGRAPH), Vol. 25, No. 3, 735–745. Google ScholarDigital Library
    14. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-Based Reconstruction of Spatial Appearance and Geometric Detail. ACM Trans. Graphics, Vol. 22, No. 2, 234–257. Google ScholarDigital Library
    15. Marschner, S. R., Westin, S. H., Lafortune, E. P. F., Torrance, K. E., and Greenberg, D. P. 1999. Image-Based BRDF Measurement Including Human Skin. In Proc. Eurographics Workshop on Rendering, 131–144. Google ScholarCross Ref
    16. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A Data-Driven Reflectance Model. ACM Trans. Graphics (Proc. ACM SIGGRAPH), Vol. 22, No. 3, 759–769. Google ScholarDigital Library
    17. McAllister, D. K. 2002. A Generalized Surface Appearance Representation for Computer Graphics. Ph. D. thesis, University of North Carolina at Chapel Hill. Google ScholarDigital Library
    18. McCool, M. D., Ang, J., and Ahmad, A. 2001. Homomorphic Factorization of BRDFs for High-Performance Rendering. In Proc. ACM SIGGRAPH, 171–178. Google ScholarDigital Library
    19. Mitsunaga, T., and Nayar, S. K. 1999. Radiometric Self Calibration. In Proc. CVPR, 374–380.Google Scholar
    20. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental Analysis of BRDF Models. In Proc. Eurographics Symposium on Rendering, 117–126. Google ScholarDigital Library
    21. Ngan, A., Durand, F., and Matusik, W. 2006. Image-Driven Navigation of Analytical BRDF Models. In Proc. Eurographics Symposium on Rendering, 399–408. Google ScholarCross Ref
    22. Ostromoukhov, V. 2001. A Simple and Efficient Error-Diffusion Algorithm. In Proc. ACM SIGGRAPH, 567–572. Google ScholarDigital Library
    23. Pang, W.-M., Qu, Y., Wong, T.-T., Cohen-Or, D., and Heng, P.-A. 2008. Structure-Aware Halftoning. ACM Trans. Graphics (Proc. ACM SIGGRAPH), Vol. 27, No. 3, 89:1–89:8. Google ScholarDigital Library
    24. Pellacini, F., Ferwerda, J. A., and Greenberg, D. P. 2000. Toward a Psychophysically-Based Light Reflection Model for Image Synthesis. In Proc. ACM SIGGRAPH, 55–64. Google ScholarDigital Library
    25. Phong, B. T. 1975. Illumination for computer generated pictures. Comm. ACM, Vol. 18, No. 6, 311–317. Google ScholarDigital Library
    26. Rusinkiewicz, S. 1998. A New Change of Variables for Efficient BRDF Representation. In Proc. Eurographics Workshop on Rendering, 11–22.Google ScholarCross Ref
    27. Stollnitz, E. J., Ostromoukhov, V., and Salesin, D. H. 1998. Reproducing Color Images Using Custom Inks. In Proc. ACM SIGGRAPH, 267–274. Google ScholarDigital Library
    28. Torrance, K. E., and Sparrow, E. M. 1967. Theory for Off-Specular Reflection from Roughened Surfaces. JOSA, Vol. 57, No. 9, 1104–1114.Google ScholarCross Ref
    29. Ulichney, R. 1987. Digital Halftoning. MIT Press, Cambridge, MA. Google ScholarDigital Library
    30. Velho, L., and de Miranda Gomes, J. 1991. Digital Halftoning with Space Filling Curves. In Proc. ACM SIGGRAPH, 81–90. Google ScholarDigital Library
    31. Ward, G. J. 1992. Measuring and Modeling Anisotropic Reflection. In Proc. ACM SIGGRAPH, 265–272. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org