“Modeling and generating moving trees from video” – ACM SIGGRAPH HISTORY ARCHIVES

“Modeling and generating moving trees from video”

  • 2011-SA-Technical-Paper_Li_Modeling-and-Generating-Moving-Trees-from-Video

Conference:


Type(s):


Title:

    Modeling and generating moving trees from video

Session/Category Title:   Video and Capture


Presenter(s)/Author(s):



Abstract:


    We present a probabilistic approach for the automatic production of tree models with convincing 3D appearance and motion. The only input is a video of a moving tree that provides us an initial dynamic tree model, which is used to generate new individual trees of the same type. Our approach combines global and local constraints to construct a dynamic 3D tree model from a 2D skeleton. Our modeling takes into account factors such as the shape of branches, the overall shape of the tree, and physically plausible motion. Furthermore, we provide a generative model that creates multiple trees in 3D, given a single example model. This means that users no longer have to make each tree individually, or specify rules to make new trees. Results with different species are presented and compared to both reference input data and state of the art alternatives.

References:


    1. Akagi, Y., and Kitajima, K. 2006. Computer animations of swaying trees based on physical animation. Computers and Graphics 30, 4, 529–539.Google ScholarCross Ref
    2. Anastacio, F., Sousa, M. C., Samavati, F., and Jorge, J. A. 2006. Modeling plant structures using concept sketches. Proceedings of the 4th international symposium on Non-photorealistic animation and rendering, 105–113. Google ScholarDigital Library
    3. Bishop, C. 2006. Pattern Recognition and Machine Learning. Springer-Velrag. Google ScholarDigital Library
    4. Chen, X., Neubert, B., Xu, Y.-Q., Deussen, O., and Kang, S. B. 2008. Sketch-based tree modeling using markov random field. ACM Trans. Graph. 27, 5, 1–9. Google ScholarDigital Library
    5. Deussen, O., and Lintermann, B. 2005. Digital Design of Nature: Computer Generated Plants and Organics. SpringerVerlag. Google ScholarDigital Library
    6. Diener, J., Reveret, L., and Fiume, E. 2006. Hierarchical retargetting of 2d motion fields to the animation of 3d plant models. ACM SIGGRAPH/Eurographics Symposium on Computer animation, 187–195. Google ScholarDigital Library
    7. Diener, J., Rodriguez, M., Baboud, L., and Reveret, L. 2009. Wind projection basis for real-time animation of trees. Computer Graphics Forum (Proceedings Eurographics 2009) 28, 2, 533–540.Google Scholar
    8. Flash, T., and Hogan, N. 1984. The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience 5, 1688–1703.Google ScholarCross Ref
    9. Habel, R., Kusternig, A., and Wimmer, M. 2009. Physically guided animation of trees. Computer Graphics Forum (Proceedings Eurographics 2009) 28, 2, 523–532.Google Scholar
    10. Harris, C., and Stephens, M. 1988. In Proc. 4th Alvey Vision Conference, 189–192.Google Scholar
    11. Lindenmayer, A. 1968. Mathematical models for cellular interactions in development ii. simple and branching filaments with two-sided inputs. Journal of Theoretical Biology 18, 3, 300–315.Google ScholarCross Ref
    12. Lintermann, B., and Deussen, O. 1999. Interactive modeling of plants. IEEE Computer Graphics and Applications 19, 1, 56–65. Google ScholarDigital Library
    13. Liu, C., Torralba, A., Freeman, W. T., Durand, F., and Adelson, E. H. 2005. Motion magnification. In ACM SIGGRAPH, 519–526. Google ScholarDigital Library
    14. Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., and El-Sana, J. 2010. Automatic reconstruction of tree skeletal structures from point clouds. ACM Trans. Graph. 29 (December), 151:1–151:8. Google ScholarDigital Library
    15. Livny, Y., Pirk, S., Cheng, Z., Yan, F., Deussen, O., Cohen-Or, D., and Chen, B. 2011. Texture-lobes for tree modeling. ACM Siggraph, to appear. Google ScholarDigital Library
    16. Lucas, B. D., and Kanade, T. 1981. An iterative image registration technique with an application to stereo vision. Proceedings of the 7th International Joint Conference on Artificial Intelligence, 674–679. Google ScholarDigital Library
    17. Minka, T. P. 2003. Estimating a dirichlet distribution. M.I.T Technical report.Google Scholar
    18. Neubert, B., Franken, T., and Deussen, O. 2007. Approximate image-based tree-modeling using particle flows. ACM Trans. Graph. 26, 3, 88–95. Google ScholarDigital Library
    19. Okabe, M., Owada, S., and Igarashi, T. 2005. Interactive design of botanical trees using freehand sketches and example-based editing. Comput. Graph. Forum 24, 3, 487–496.Google ScholarCross Ref
    20. Ota, S., Tamura, M., Fujimoto, T., and K, M. 2004. A hybrid method for the real-time animation of trees swaying in wind fields. The Visual Computer 20, 11, 613–623.Google ScholarDigital Library
    21. Palubicki, W., Horel, K., Longay, S., Runions, A., Lane, B., Měch, R., and Prusinkiewicz, P. 2009. Self-organizing tree models for image synthesis. ACM SIGGRAPH, 1–10. Google ScholarDigital Library
    22. Prusinkiewicz, P., and Lindenmayer, A. 1990. The algorithmic beauty of plants. Springer-Verlag. Google ScholarDigital Library
    23. Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., and Kang, S. B. 2006. Image-based plant modeling. ACM Trans. Graph. 25, 3, 599–604. Google ScholarDigital Library
    24. Reche-Martinez, A., Martin, I., and Drettakis, G. 2004. Volumetric reconstruction and interactive rendering of trees from photographs. ACM Trans. Graph. 23, 3, 720–727. Google ScholarDigital Library
    25. Sakaguchi, T., and Ohya, J. 1999. Modeling and animation of botanical trees for interactive virtual environments. In ACM symposium on Virtual reality software and technology, 139–146. Google ScholarDigital Library
    26. Shi, J., and Malik, J. 2000. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 8, 888–905. Google ScholarDigital Library
    27. Shinya, M., and A, F. 1992. Stochastic motion-motion under the influence of wind. Computer Graphics Forum 11, 3, 119–128.Google ScholarCross Ref
    28. Shlyakhter, I., Rozenoer, M., Dorsey, J., and Teller, S. 2001. Reconstructing 3d tree models from instrumented photographs. IEEE Comput. Graph. Appl. 21, 3, 53–61. Google ScholarDigital Library
    29. Sun, M., Jepson., A. D., and Fiume, E. 2003. Video input driven animation (vida). In Proceedings of the Ninth IEEE International Conference on Computer Vision – Volume 2, 96–103. Google ScholarDigital Library
    30. Talton, J. O., Lou, Y., Lesser, S., Duke, L, Mech, R., and Koltun, V 2011. Metropolis procedural modeling. ACM Tran-s. Graph. 30, 11:1–11:14. Google ScholarDigital Library
    31. Tan, P., Zeng, G., Wang, L, Kang, S. B., and Quan, L. 2007. Image-based tree modeling. In ACM SIGGRAPH, 87–93. Google ScholarDigital Library
    32. Tan, P., Fang, T., Xiao, L, Zhao, P., and Quan, L. 2008. Single image tree modeling. ACM Trans. Graph. 27, 5, 1–7. Google ScholarDigital Library
    33. Wessélen, D., and Seipel, S. 2005. Real-time visualisation of animated trees. The Visual Computer 21, 6, 397–405.Google ScholarCross Ref
    34. Xu, FL, Gossett, N., and Chen, B. 2007. Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans. Gr 26, 4, 19–31. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org